HOME: Home

Development of an electrochemical immunosensor using gold nanoparticles (AuNPs) for the detection of Apolipoprotein AI (ApoAI) in chicken blood plasma

E-mail Print PDF

mac2023

Nurhazirah Azmi

Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perak, Tapah Campus, 35400  Tapah Road, Perak  Malaysia

Siti Aimi Sarah Zainal Abidin

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Malaysia Intstitute of Transport (MITRANS), Universiti Teknologi MARA, 40000 Shah Alam, Selangor, Malaysia

Low Kim Fatt

Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perak, Tapah Campus, 35400  Tapah Road, Perak  Malaysia

Abdul Hadi Mahmud

Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perak, Tapah Campus, 35400  Tapah Road, Perak  Malaysia

Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Nur Izzati Gati

Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Perak, Tapah Campus, 35400  Tapah Road, Perak  Malaysia

Saiful Anuar Karsani

Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

Abstract
The research aims to develop an electrochemical immunosensing assay using gold nanoparticles (AuNPs) on screen printed carbon electrode (SPCE) for the specific detection of Apolipoprotein A1 (ApoA1) proteins in chicken blood plasma (CBP). The biotin anti-ApoAI antibody was first immobilized on magnetic beads (MBs), while antibody ApoA1 was then conjugated with AuNPs. After a series of sandwich-type immunoreaction complexes was performed on the screen-printed carbon electrode, AuNPs were quantified by subjecting the immunocomplex to a peroxidation process of high potential at 1.2 V for 330 s and immediately reduced and scanned by differential pulse voltammetry (DPASV). This study obtained a linear relationship between reduction peak current signals and ApoA1 concentration from 0 to 100% (correlation coefficient of 0.996 with a detection limit of 5% of chicken blood plasma (CBP). The efficacy of our immunosensor is predicated on the seamless integration of antibodies with MBs to the target analyte, which provide ample surface area, biocompatibility, and user-friendliness. This breakthrough improves preliminary food fraud detection's sensitivity, reliability, and usability. It could improve diagnostic food safety, leading to a worldwide health breakthrough.

pdf

Keyword: Chicken blood plasma, Apolipoprotein AI, Electrochemical immunosensor, Gold nanoparticles, Magnetic beads

DOI: https://doi.org/10.24191/esteem.v20iMarch.595.g471

References:

[1] S.-W. Hou et al., “Integrated recognition and quantitative detection of starch in surimi by infrared spectroscopy and spectroscopic imaging,” Spectrochim. Acta Part A Mol. Biomol. Spectrosc., vol. 215, pp. 1–8, 2019, doi: 10.1016/j.saa.2019.02.080.

[2] B. F. S. P. Negara, S. R. Kim, J. H. Sohn, J. S. Kim, and J. S. Choi, “Application of high-frequency defrosting, superheated steam, and quick-freezing treatments to improve the quality of seafood home meal replacement products consisting of the adductor muscle of pen shells and common squid meat,” Appl. Sci., vol. 11, no. 7, pp. 1–18, 2021, doi: 10.3390/app11072926.

[3] A. J. Borderías, C. A. Tovar, F. Domínguez-Timón, M. T. Díaz, M. M. Pedrosa, and H. M. Moreno, “Characterization of healthier mixed surimi gels obtained through partial substitution of myofibrillar proteins by pea protein isolates,” Food Hydrocoll., vol. 107, pp. 1–10, 2020, doi: 10.1016/j.foodhyd.2020.105976.

[4] M. Kazir and Y. D. Livney, “Plant-based seafood analogs,” Molecules, vol. 26, no. 6, pp. 1–14, 2021, doi: 10.3390/molecules26061559.

[5] F. W. Putnam, The plasma proteins: Structure, function, and genetic control. Elsevier Science, 2012. Available: https://books.google.ie/books?id=Z0yVSF04Lm0C

[6] N. B. Sa’dom, A. Abdullah, and A. M. Adnan, “Kaedah pengenalpastian kehadiran bahan tambah unsur haiwan yang tidak dilabel dalam produk berasaskan surimi menggunakan kaedah PCR spesifik-spesies,” E-Buletin Teknol. Mardi, vol. 12, pp. 47–55, 2017.

[7] J. G. Silva, H. A. Morais, and M. P. C. Silvestre, “Comparative study of the functional properties of bovine globin isolates and sodium caseinate,” Food Res. Int., vol. 36, no. 1, pp. 73–80, 2003, doi: 10.1016/S0963-9969(02)00110-2.

[8] S. Rawdkuen, S. Benjakul, W. Visessanguan, and T. C. Lanier, “Chicken plasma protein affects gelation of surimi from bigeye snapper (Priacanthus tayenus),” Food Hydrocoll., vol. 18, no. 2, pp. 259–270, 2004, doi: 10.1016/S0268-005X(03)00082-1.

[9] N. Ain, S. A. Sarah, N. Azmi, A. Bujang, and S. R. Ab Mutalib, “Response surface methodology (RSM) identifies the lowest amount of chicken plasma protein (CPP) in surimi-based products with optimum protein solubility, cohesiveness, and whiteness,” CYTA - J. Food, vol. 21, no. 1, pp. 646–655, 2023, doi: 10.1080/19476337.2023.2272627.

[10] M. Mangaraj, R. Nanda, and S. Panda, “Apolipoprotein AI: A molecule of diverse function,” Indian J. Clin. Biochem., vol. 31, no. 3, pp. 253–259, 2016, doi: 10.1007/s12291-015-0513-1.

[11] A. S. Bhale and K. Venkataraman, “Leveraging knowledge of HDLs major protein ApoA1: Structure, function, mutations, and potential therapeutics,” Biomed. Pharmacother., vol. 154, pp. 1–18, 2022, doi: 10.1016/j.biopha.2022.113634.

[12] B. Packialakshmi, R. Liyanage, J. O. Lay, S. K. Makkar, and N. C. Rath, “Proteomic changes in chicken plasma induced by Salmonella typhimurium lipopolysaccharides,” Proteomics Insights, vol. 7, no. 1, pp. 1–9, 2016, doi: 10.4137/PRI.S31609.

[13] A. M. Sahilah, M. N. Laila Liyana, S. Aravindran, A. Aminah, and A. Mohd Khan, “Halal authentication in Malaysia context: Potential adulteration of non- Halal ingredients in meatballs and surimi products,” Int. Food Res. J., vol. 23, no. 5, pp. 1832–1838, 2016.

[14] S. Bansal, A. Singh, M. Mangal, A. K. Mangal, and S. Kumar, “Food adulteration: Sources, health risks, and detection methods,” Critical Reviews in Food Science and Nutrition, vol. 57, no. 6, pp. 1174–1189, Jun. 2015, doi: 10.1080/10408398.2014.967834.

[15] M. H. Yuswan et al., “Improved gel-enhanced liquid chromatography-mass spectrometry by chemometrics for halal proteomics,” Chemometrics and Intelligent Laboratory Systems, vol. 192, p. 103825, Sep. 2019, doi: 10.1016/j.chemolab.2019.103825.

[16] E. Fornal and M. Montowska, “Species-specific peptide-based liquid chromatography–mass spectrometry monitoring of three poultry species in processed meat products,” Food Chemistry, vol. 283, pp. 489–498, Jun. 2019, doi: 10.1016/j.foodchem.2019.01.074.

[17] A. Haji, K. Desalegn, and H. Hassen, “Selected food items adulteration, their impacts on public health, and detection methods: A review,” Food Science & Nutrition, vol. 11, no. 12, pp. 7534–7545, Oct. 2023, doi: 10.1002/fsn3.3732.

[18] A. Gupta, Chansi, and T. Basu, “Gold Nanostructure Orchestrated Electrochemical Immunosensor Integrated with Antibody-Electroactive Probe Conjugate for Rapid Detection of SARS-CoV-2 Antibody,” IECB 2023, Jun. 2023, doi: 10.3390/iecb2023-14717.

[19] S. Osaki, W. V. Espulgar, S. Wakida, M. Saito, and E. Tamiya, “Optimization of electrochemical analysis for signal amplification in gold nanoparticle-probed immunoassays,” Electrochimica Acta, vol. 432, p. 141180, Nov. 2022, doi: 10.1016/j.electacta.2022.141180.

[20] R. M. H. Raja Nhari, N. F. Khairil Mokhtar, I. Hanish, M. Hamid, M. A. A. Mohamed Rashidi, and N. M. Shahidan, “Monoclonal antibody-based enzyme immunoassay for detection of porcine plasma in fish surimi,” Food Addit. Contam. Part A, vol. 35, no. 5, pp. 807–817, 2018, doi: 10.1080/19440049.2017.1420920.

[21] X. Zhang et al., “Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 497, pp. 280–285, 2016, doi: 10.1016/j.colsurfa.2016.02.033.

[22] D. Subara and I. Jaswir, “Gold Nanoparticles: Synthesis and application for Halal Authentication in Meat and Meat Products,” International Journal on Advanced Science, Engineering and Information Technology, vol. 8, no. 4–2, pp. 1633–1641, Sep. 2018, doi: 10.18517/ijaseit.8.4-2.7055.

[23] S. Tanaka et al., “High-density lipoproteins during sepsis: from bench to bedside,” Critical Care, vol. 24, no. 1, Apr. 2020, doi: 10.1186/s13054-020-02860-3.

[24] G. Khirfan, M. Li, X. Wang, J. A. DiDonato, R. A. Dweik, and G. A. Heresi, “Abnormal levels of apolipoprotein A?I in chronic thromboembolic pulmonary hypertension,” Pulmonary Circulation, vol. 11, no. 2, pp. 1–7, Apr. 2021, doi: 10.1177/20458940211010371.

[25] B. Mohanty et al., “Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition,” Journal of Amino Acids, vol. 2014, pp. 1–7, Oct. 2014, doi: 10.1155/2014/269797.

[26] R. Husna, C. P. Kurup, M. A. Ansari, N. F. Mohd-Naim, and M. U. Ahmed, “An electrochemical aptasensor based on AuNRs/AuNWs for sensitive detection of apolipoprotein A-1 (ApoA1) from human serum,” RSC Advances, vol. 13, no. 6, pp. 3890–3898, 2023, doi: 10.1039/d2ra06600a.

[27] F. Kareem, M. Rizwan, and M. U. Ahmed, “A novel label-free electrochemical immunosensor based on DCNC@AgNPs/MXene for the detection of apolipoprotein A-1 in human serum,” Electrochimica Acta, vol. 474, p. 143536, Jan. 2024, doi: 10.1016/j.electacta.2023.143536.