HOME: Online Issues

Effects of ZnCl2 Catalyst Loading in Hydrothermal Carbonization of Cotton Textile Waste to Produce Hydrochars

E-mail Print PDF

mac2023

Muhammad Kasyfil Adha Rosly

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Wan Zuraida Wan Kamis

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nur Alwani Ali Bashah

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Norain Isa

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Vicinisvarri Inderan

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Azam Taufik Mohd Din

School of Chemical Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Abstract
Hydrothermal carbonization (HTC) is a thermochemical process that utilizes biomass as feedstocks to produce hydrochars as solid fuel. Cotton textile wastes (CTW) are abundant; most are landfilled or incinerated, causing environmental pollution. CTW is rich in cellulose, thus suitable as biomass feedstock. HTC at a moderate temperature below 230 °C yields low-value hydrochars with low carbon content; however, an acid catalyst enhances the reaction. In this study, zinc-activated cotton textile waste (Zn-CTW) was synthesized via incipient wetness impregnation and used as a catalyst in hydrothermal carbonization to produce hydrochars. The reactions were conducted in a batch reactor at a temperature of 200 °C for 3 h. The effects of ZnCl2 catalyst loading on CTW were studied. The characteristics of hydrochars in terms of surface morphologies, hydrogen/carbon (H/C) and oxygen/carbon (O/C) ratios and surface functional groups were affected by the ZnCl2 loading on CTW. The results show that the hydrothermal carbonization of Zn-CTW-1.5 obtained hydrochars with the lowest H/C and O/C ratio values of 1.286 and 0.614, respectively. The FTIR analysis indicates stretching vibration of the C-O bond, which are the carboxylic acids and esters formed in the hydrochars. The hydrochars' surface morphologies show irregular and rough surfaces. It is concluded that Zn-CTW has the potential as a heterogeneous catalyst to produce hydrochars via hydrothermal carbonization.

pdf

Keyword: biomass; hydrothermal carbonization; hydrochars; heterogenous catalyst; solid fuel

DOI: https://doi.org/10.24191/esteem.v19iMarch.21076

References:

[1]M. S. Samin, Z. Wan, N. Yazid, N. A. A. Bashah, H. Hassan, A. K. Nur Fadzeelah, S. K. Jamaludin, and S. S. Mohd Sukri, “Effect of Sythesis Conditions of Cr-Ti Mixed Oxides on FAME and Catalyst Characteristics” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, pp. 1–6, 2020, doi: 10.1088/1757-899X/864/1/012027.

[2]N. A. Ali Bashah, A. Luin, I. A. Jalaluddin, I. A. Shahhaizad, N. F. Ismail, and W. Z. Wan Kamis, “Characteristics of chromium based mixed oxide catalyst in biodiesel production” J. Phys. Conf. Ser., vol. 1349, no. 1, 2019, doi: 10.1088/1742-6596/1349/1/012143.

[3]S. Nizamuddin, H.  A. Baloch, G. J. Griffin, N. M. Mubarak, A. W. Bhutto, R. Abro, S. A. Mazari, and B. S. Ali, “An overview of effect of process parameters on hydrothermal carbonization of biomass” Renew. Sustain. Energy Rev., vol. 73, no. December 2016, pp. 1289–1299, 2017, doi: 10.1016/j.rser.2016.12.122.

[4]T. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties” Renew. Sustain. Energy Rev., vol. 90, no. February, pp. 223–247, 2018, doi: 10.1016/j.rser.2018.03.071.

[5]X. Zhang, R. Huang, Y. Cao, and C. Wang, “Rapid conversion of red mud into soil matrix by co-hydrothermal carbonization with biomass wastes” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106039, 2021, doi: 10.1016/j.jece.2021.106039.

[6]J. Zhao, C. Liu, T. Hou, Z. Lei, T. Yuan, K. Shimizu, and Z. Zhang, “Conversion of biomass waste to solid fuel via hydrothermal co-carbonization of distillers grains and sewage sludge” Bioresour. Technol., vol. 345, no. December 2021, p. 126545, 2022, doi: 10.1016/j.biortech.2021.126545.

[7]B. Seshadri, N. S. Bolan, R. Thangarajan, U. Jena, K.C. Das, H. Wang, and R. Naidu, “Biomass Energy from Revegetation of Landfill Site” Bioremediation and Bioeconomy, Elsevier, pp. 99–109, 2016.

[8]N. K. Niazi, B. Murtaza, I. Bibi, M. Shahid, J. C. White, M. F. Nawaz, S. Bashir, M. B. Shakoor, G. Choppala, G. Murtaza, and H. Wang, “Removal and Recovery of Metals by Biosorbents and Biochars Derived From Biowastes” Elsevier Inc., pp. 149-177, 2016.

[9]J. Lee, J. Hong, D. Jang, and K. Y. Park, “Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel” J. Environ. Manage., vol. 247, no. May, pp. 115–120, 2019, doi: 10.1016/j.jenvman.2019.06.067.

[10]A. L. Pauline and K. Joseph, “Hydrothermal carbonization of organic wastes to carbonaceous solid fuel – A review of mechanisms and process parameters” Fuel, vol. 279, no. December 2019, p. 118472, 2020, doi: 10.1016/j.fuel.2020.118472.

[11]S. Nizamuddin, N. S. Jayakumar, J. N. Sahu, P. Ganesan, A. W. Bhutto, and  N. M. Mubarak, “Hydrothermal carbonization of oil palm shell” Korean J. Chem. Eng., vol. 32, pp. 1789–1797,  2015, doi: 10.1007/s11814-014-0376-9.

[12]M. T. Reza, E. Rottler, L. Herklotz, and B. Wirth, “Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide” Bioresour. Technol., vol. 182, pp. 336-334, 2015, doi: 10.1016/j.biortech.2015.02.024.

[13]S. E. Elaigwu, G. M. Greenway, “Microwave-assisted hydrothermal carbonization of rapeseed husk: A strategy for improving its solid fuel properties” Fuel Process. Technol., vol. 149, pp. 305-312, 2016, doi: 10.1016/j.fuproc.2016.04.030.

[14]J. Cai, B. Li, C. Chen, J. Wang, M. Zhao, and K. Zhang, “Hydrothermal carbonization of tobacco stalk for fuel application” Bioresour. Technol., vol 220, pp. 305-311, 2016, doi:10.1016/j.biortech.2016.08.098

[15]R. Qi, Z. Xu, Y. Zhou, D. Zhang, Z. Sun, W. Chen, and M. Xiong, “Clean solid fuel produced from cotton textiles waste through hydrothermal carbonization with FeCl3: Upgrading the fuel quality and combustion characteristics” Energy, vol. 214, p. 118926, 2021, doi: 10.1016/j.energy.2020.118926.

[16]Z. Xu, R. Qi, M. Xiong, D. Zhang, H. Gu, and W. Chen, “Conversion of cotton textile waste to clean solid fuel via surfactant-assisted hydrothermal carbonization: Mechanisms and combustion behaviors” Bioresour. Technol., vol. 321, no. November 2020, 2021, doi: 10.1016/j.biortech.2020.124450.

[17]S. B. A. Hamid, S. J. Teh, and Y. S. Lim, “Catalytic hydrothermal upgrading of ?-cellulose using iron salts as a lewis acid” BioResources, vol. 10, no. 3, pp. 5974–5986, 2015, doi: 10.15376/biores.10.3.5974-5986.

[18]K. Sheng, S. Zhang, J. Liu, E. Shuang, C. Jin, Z. Xu, and X. Zhang, “Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization” J. Clean. Prod., vol. 237, p. 117831, 2019, doi: 10.1016/j.jclepro.2019.117831.

[19]F. Li, A. R. Zimmerman, X. Hu, Z. Yu, J. Huang, and B. Gao, “One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl2” Chemosphere, vol.254, 126866, 2020, doi: 10.1016/j.chemosphere.2020.126866.

[20]Y. Ma, Q. Wang, X. Wang, X. Sun, X. Wang, “A comprehensive study on activated carbon prepared from spent shiitake substrate via pyrolysis with ZnCl” J. Porous Mater., vol. 22, pp. 157-169, 2015, doi: 10.1007/s10934-014-9882-8.

[21]X. Zhu, Y. Liu, F. Qian, C. Zhou, S. Zhang, and J. Chen, “Role of Hydrochar Properties on the Porosity of Hydrochar-based Porous Carbon for Their Sustainable Application” ACS Sustain. Chem. Eng., vol. 3, pp. 833-840, 2015, doi: 10.1021/acssuschemeng.5b00153.

[22]Z. Liu, A. Quek, S. Kent Hoekman, and R. Balasubramanian, “Production of solid biochar fuel from waste biomass by hydrothermal carbonization” Fuel, vol. 103, pp. 943–949, 2013, doi: 10.1016/j.fuel.2012.07.069.

[23]M. Ameen, N. M. Zamri, S. T. May, M. T. Azizan, A. Aqsha, N. Sabzoi, and F. Sher, “Effect of acid catalysts on hydrothermal carbonization of Malaysian oil palm residues (leaves, fronds, and shells) for hydrochar production” Biomass Convers. Biorefinery, vol. 12, no. 1, pp. 103–114, 2022, doi: 10.1007/s13399-020-01201-2.

[24]X. Chen, Q. Lin, R. He, X. Zhao, and G. Li, “Hydrochar production from watermelon peel by hydrothermal carbonization” Bioresour. Technol., vol. 241, pp. 236–243, 2017, doi: 10.1016/j.biortech.2017.04.012.

[25]S. L. R. Roger, W. Z. Wan Kamis, N. I. Isa, N. Ali Bashah, and V. Inderan, “Synthesis and Characterizations of Chromium- Aluminium Mixed Oxides Catalysts to Produce FAME” ESTEEM Acad. Journal, vol. 18, no. September, pp. 120–128, 2022.