Muhammad Luqman Nur Hakim Kamarudin Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Alhan Farhanah Abd Rahim Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Nurul Syuhadah Mohd Razali Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Rosfariza Radzali Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Ainorkhilah Mahmood Department of Applied Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Irni Hamiza Hamzah Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Mohaiyedin Idris Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Mohamed Fauzi Packeer Mohamed School of Electrical and Electronic Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia |
|
Abstract | |
Insufficiently high doping in polysilicon gates of metal oxide semiconductor field effect transistor (MOSFET) becomes unavoidable due to the demands for low-energy ion implantation and limited annealing conditions to achieve ultra-shallow source and drain junctions. This results in the poly-depletion effect for ultra-thin MOSFET, loss of current drive and shift in the threshold voltage. This problem gets intense when the device is further scaled down for the gate length and thickness of gate oxide. Hence, our current work focuses on the effect of gate geometrical effect and polysilicon gate doping on scaled n-channel MOSFET(NMOS) performance. The NMOS device was constructed using TCAD ATLAS tools from SILVACO software. Six different gate lengths of 0.6 µm, 0.4µm, 0.2 µm, 60 nm, 40 nm and 20 nm were set, and the n-type doping concentration in the polysilicon gate was varied to 1× 1018, 1× 1020 and 1 × 1021 cm-3 respectively to see their effect on the NMOS I-V and C-V performances. The findings showed that as the gate length is scaled down, the drain current increases, and as the concentration of the polysilicon doping increases, the value of the threshold voltage, VTH decreases. Based on the simulation and data collected, it can be concluded that the optimum concentration of polysilicon doping that can reduce the poly-depletion effect is 1 × 1021 cm-3, and the optimum gate length that can be used to overcome the problem is 20 nm. | |
Keyword: Scaled NMOS, SILVACO TCAD tools, Gate Geometric Effect, Polysilicon Doping | |
References: | |
[1]S. Dimitrijev and N. Oxford, Principle of Semiconductor Devices Second Edition. 2011. [2]X. Mathew, Principle of Semiconductor Devices, vol. 82, no. 1–2. B. Van Zeghbroeck, 2004. [3]O. Zobiri, A. Atia, and M. Ar?c?, “Study of robin condition influence on phonon nano-heat conduction using meso-scale method in MOSFET and SOI-MOSFET devices,” Mater. Today Commun., vol. 26, no. November 2020, p. 102031, 2021, doi: 10.1016/j.mtcomm.2021.102031. [4]M. Mounir Mahmoud and N. Soin, “A comparative study of lifetime reliability of planar MOSFET and FinFET due to BTI for the 16?nm CMOS technology node based on reaction-diffusion model,” Microelectron. Reliab., vol. 97, no. March, pp. 53–65, 2019, doi: 10.1016/j.microrel.2019.03.007. [5]R. Dutta and S. Kundu, “Effect of polysilicon gate doping concentration variation on MOSFET characteristics,” CODEC 2012 - 5th Int. Conf. Comput. Devices Commun., vol. 3, pp. 3–6, 2012, doi: 10.1109/CODEC.2012.6509245. [6]O. Suziana, B. Ayub, M. Redzuan, A. R. Shahrir, and M. Y. Yunus, “Structure Effect of Doping Concentration on Electrical Characteristics of NMOS Structure,” vol. 575, pp. 1–7, 2009, doi: 10.1063/1.3160210. [7]Donald Neamen and Dhrubes Biswas, Semiconductor Physics and Devices, 4th Edition, Mc Graw Hill Education, 2017. [8]C. Huang, N. D. Arora, and S. Member, “Measurements and Modeling of MOSFET Z- V Characteristics with Polysilicon Depletion Effect,” vol. 40, no. 12, 1993. [9]B. Mehandia, “Study of Electrical Characteristics of SOI MOSFET Using Silvaco TCAD Simulator,” vol. 1, pp. 15–18, 2017. [10]M. T. Abuelma’atti, “MOSFET Scaling Crisis and the Evolution of Nanoelectronic Devices: The Need for Paradigm Shift in Electronics Engineering Education,” Procedia - Soc. Behav. Sci., vol. 102, no. Ifee 2012, pp. 432–437, 2013, doi: 10.1016/j.sbspro.2013.10.758. [11]A. Fikru, “The scaling of MOSFETs, Moore’s law, and ITRS,” pp. 1–10, 2016, [Online]. Available: papers2://publication/uuid/613689B3-EF73-4B85-832A-9805A6A7F92C. [12]P. M. Zeitzoff and H. R. Huff, “MOSFET scaling trends, challenges, and key associated metrology issues through the end of the roadmap,” AIP Conf. Proc., vol. 788, no. September 2005, pp. 203–213, 2005, doi: 10.1063/1.2062964. [13]K. Osman and R. Sanudin, “Gate Length Effect on NMOS Electrical Characteristics using Tcad Tools,” Eng. Postgrad. Conf., 2008. [14]R. Rios, N. D. Arora, and C. L. Huang, “An Analytic Polysilicon Depletion Effect Model for MOSFET’s,” IEEE Electron Device Lett., vol. 15, no. 4, pp. 129–131, 1994, doi: 10.1109/55.285407. [15]O. A. Adenekan, P. Holland, and K. Kalna, “Scaling and optimisation of lateral super-junction multi-gate MOSFET for high drive current and low specific on-resistance in sub–50?V applications,” Microelectron. Reliab., vol. 99, no. March, pp. 213–221, 2019, doi: 10.1016/j.microrel.2019.04.008. [16]C. Choi et al., “Gate Length Dependent Polysilicon Depletion Effects,” vol. 23, no. 4, pp. 224–226, 2002. [17]R. Dutta and S. Kundu, "Effect of polysilicon gate doping concentration variation on MOSFET characteristics," 2012 5th International Conference on Computers and Devices for Communication (CODEC), Kolkata, India, pp. 1-4, 2012, doi: 10.1109/CODEC.2012.6509245. [18]Muhammad Elgamal, Aya Sinjab, Mostafa Fedawy and Ahmed Shaker, Effect of doping profile and the work function variation on performance of double-gate TFET, The International Journal of Integrated Engineering, vol. 11, no.7, pp. 40-46, 2019. [19]A. Asenov and S. Saini, "Polysilicon gate enhancement of the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxide," in IEEE Transactions on Electron Devices, vol. 47, no. 4, pp. 805-812, April 2000, doi: 10.1109/16.830997. [20]E. H. Minhaj, S. R. Esha, M. M. R. Adnan and T. Dey, "Impact of Channel Length Reduction and Doping Variation on Multigate FinFETs," 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Gazipur, Bangladesh, pp. 1-4, 2018. doi: 10.1109/ICAEEE.2018.8642981. [21]G. Ghibaudo, M. Aouad, M. Casse, S. Martinie, T. Poiroux, and F. Balestra, “On the modelling of temperature dependence of subthreshold swing in MOSFETs down to cryogenic temperature,” Solid. State. Electron., vol. 170, no. April, p. 107820, 2020, doi: 10.1016/j.sse.2020.107820. [22] S. Cristoloveanu, "Chapter 10 - Emerging devices," in Fully Depleted Silicon-On-insulator, S. Cristoloveanu Ed.: Elsevier, pp. 299-348, 2021.
|