HOME: Online Issues

Biopolymer-based composite adsorbent beads for the removal of methylene blue dyes

E-mail Print PDF

Anis Nazira Alizan

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Malaysia

Faraziehan Senusi

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Malaysia

Nurulhuda Amri

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh 13500, Malaysia

Mohammad Shahadat

School of Chemical Sciences, Univeristi Sains Malaysia, Penang 11800, Malaysia

 

Abstract
Dyes containing waste streams are the most common pollutants found in wastewater, posing a severe threat to both the ecosystem and the environment. Adsorption emerges as one of the most effective and widely applied treatments for removing dyes due to its simple operation, high efficiency, and low cost. Sodium alginate, as a biopolymer, is one of the alternative adsorbents used in the adsorption process. However, the lack of active sites and low rigidity limits the adsorption capacity performance of this biopolymer. This study aims to introduce biopolymer-based composite adsorbent beads for removing methylene blue (MB) dye from an aqueous solution. Herein, TA/PANI/SA composite adsorbent beads consisting of tannic acid (TA) and polyaniline (PANI) were prepared by the cross-linking method of sodium alginate (SA) with the presence of divalent cations in calcium chloride. Characterization was performed using FTIR analysis to determine the changes in surface-modified composite beads. The results indicated that the removal efficiency of MB dye exhibited a significant enhancement of up to 72% when compared to untreated alginate beads, which only achieved approximately 30% removal. It was also found that the interactions occurred during the cross-linking process as well as during the adsorption process of MB dye onto the composite adsorbent beads. The adsorption mechanisms of MB dye by composite adsorbent beads include electrostatic interaction, ?-? interactions, and hydrogen bonding. The improvement in the removal efficiency and the possibility of interactions during the cross-linking process suggested that the biopolymer-based composite beads have great potential to be used as adsorbents for removing dye in an aqueous solution.

pdf

Keyword: Biopolymer, Composite, Adsorption, Catecholamine, Beads Dyes

DOI: https://doi.org/10.24191/esteem.v20iMarch.567.g473

References:

[1] J. Zhao et al., “PVDF membrane was modified by hydroxymethylated lignin to improve its hydrophilicity in treating oily wastewater,” Mater. Today Commun., vol. 35, no. April, 2023. Available: doi: 10.1016/j.mtcomm.2023.106055.

[2] K. K. H. Dizayee and S. J. Judd, “A Brief Review of the Status of Low-Pressure Membrane Technology Implementation for Petroleum Industry Effluent Treatment,” Membranes (Basel)., vol. 12, no. 4, 2022. Available: doi: 10.3390/membranes12040391.

[3]L. Schweitzer and J. Noblet, “Water Contamination and Pollution,” in Green Chemistry, Elsevier, pp. 261–290, 2018. Available: doi: 10.1016/B978-0-12-809270-5.00011-X.

[4] S. K. Yadav, S. R. Dhakate, and B. Pratap Singh, “Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes,” Bioresour. Technol., vol. 344, p. 126231, Jan. 2022. Available: doi: 10.1016/j.biortech.2021.126231.

[5] I. Dalponte Dallabona, Á. L. Mathias, and R. M. M. Jorge, “A new green floating photocatalyst with Brazilian bentonite into TiO2/alginate beads for dye removal,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 627, p. 127159, Oct. 2021, doi: 10.1016/j.colsurfa.2021.127159.

[6] K. O. Iwuozor, J. O. Ighalo, E. C. Emenike, L. A. Ogunfowora, and C. A. Igwegbe, “Adsorption of methyl orange: A review on adsorbent performance,” Curr. Res. Green Sustain. Chem., vol. 4, p. 100179, 2021. Available: doi: 10.1016/j.crgsc.2021.100179.

[7] S. Xu, Y. Jin, R. Li, M. Shan, and Y. Zhang, “Amidoxime modified polymers of intrinsic microporosity/alginate composite hydrogel beads for efficient adsorption of cationic dyes from aqueous solution,” J. Colloid Interface Sci., vol. 607, pp. 890–899, Feb. 2022. Available: doi: 10.1016/j.jcis.2021.08.157.

[8] N. B. Singh, G. Nagpal, S. Agrawal, and Rachna, “Water purification by using Adsorbents: A Review,” Environ. Technol. Innov., vol. 11, pp. 187–240, 2018, doi: 10.1016/j.eti.2018.05.006.

[9] M. Hassan et al., “Magnetically separable mesoporous alginate polymer beads assist adequate removal of aqueous methylene blue over broad solution pH,” J. Clean. Prod., vol. 319, p. 128694, Oct. 2021. Available: doi: 10.1016/j.jclepro.2021.128694.

[10] B. Wang et al., “Alginate-based composites for environmental applications: a critical review,” Crit. Rev. Environ. Sci. Technol., vol. 49, no. 4, pp. 318–356, Feb. 2019. Available: doi: 10.1080/10643389.2018.1547621.

[11] M. Shahadat et al., “A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite,” Adv. Colloid Interface Sci., vol. 249, pp. 2–16, Nov. 2017. Available: doi: 10.1016/j.cis.2017.08.006.

[12] H. Xie et al., “Efficient oil-water emulsion treatment via novel composite membranes fabricated by CaCO3-based biomineralization and TA-Ti(IV) coating strategy,” Sci. Total Environ., vol. 857, no. September 2022. Available: doi: 10.1016/j.scitotenv.2022.159183.

[13] C. Chen, H. Yang, X. Yang, and Q. Ma, “Tannic acid: A crosslinker leading to versatile functional polymeric networks: A review,” RSC Adv., vol. 12, no. 13, pp. 7689–7711, 2022. Available: doi: 10.1039/d1ra07657d.

[14] Y. Wei et al., “A soy protein-based adhesive with improved mechanical and electromagnetic shielding properties by employment of core@double-shell BT@PDA@PANI fillers,” Chem. Eng. J., vol. 458, p. 141512, Feb. 2023. Available: doi: 10.1016/j.cej.2023.141512.

[15] X. Li, H. Lu, Y. Zhang, F. He, L. Jing, and X. He, “Fabrication of magnetic alginate beads with uniform dispersion of CoFe2O4 by the polydopamine surface functionalization for organic pollutants removal,” Appl. Surf. Sci., vol. 389, pp. 567–577, Dec. 2016. Available: doi: 10.1016/j.apsusc.2016.07.162.

[16] F. Aziz et al., “Composites with alginate beads: A novel design of nano-adsorbents impregnation for large-scale continuous flow wastewater treatment pilots,” Saudi J. Biol. Sci., vol. 27, no. 10, pp. 2499–2508, Oct. 2020. Available: doi: 10.1016/j.sjbs.2019.11.019.

[17] S. Peretz, D. F. Anghel, E. Vasilescu, M. Florea-Spiroiu, C. Stoian, and G. Zgherea, “Synthesis, characterization and adsorption properties of alginate porous beads,” Polym. Bull., vol. 72, no. 12, pp. 3169–3182, Dec. 2015. Available: doi: 10.1007/s00289-015-1459-4.

[18] J. Ding, W. Zhang, X. Dai, J. Yao, and G. Gao, “Synchronous removal and separation of multiple contaminants by poly (vinylidene fluoride)/polyaniline ultrafiltration membrane,” J. Environ. Chem. Eng., vol. 10, no. 6, p. 108926, Dec. 2022. Available: doi: 10.1016/j.jece.2022.108926.

[19] M. Z. I. Mollah, M. R. I. Faruque, D. A. Bradley, M. U. Khandaker, and S. Al Assaf, “FTIR and rheology study of alginate samples: Effect of radiation,” Radiat. Phys. Chem., vol. 202, no. September 2022. Available: doi: 10.1016/j.radphyschem.2022.110500.

[20] V. Janaki et al., “Starch/polyaniline nanocomposite for enhanced removal of reactive dyes from synthetic effluent,” Carbohydr. Polym., vol. 90, no. 4, pp. 1437–1444, 2012. Available: doi: 10.1016/j.carbpol.2012.07.012.

[21] T. P. de Araújo et al., “Acetaminophen removal by calcium alginate/activated hydrochar composite beads: Batch and fixed-bed studies,” Int. J. Biol. Macromol., vol. 203, no. January, pp. 553–562, Apr. 2022. Available: doi: 10.1016/j.ijbiomac.2022.01.177.

[22] D. Li et al., “Application of a Catechol-Polyamine Co-Deposition method for synthesis of Heteroatom-Doped carbon nanomaterials,” Chem. Eng. J., vol. 429, no. July 2021, p. 132363, Feb. 2022. Available: doi: 10.1016/j.cej.2021.132363.

[23] F. Senusi, N. Nasuha, A. Husain, and S. Ismail, “Synthesis of catechol-amine coating solution for membrane surface modification,” Environ. Sci. Pollut. Res., vol. 30, no. 60, pp. 124585–124595, May 2022. Available: doi: 10.1007/s11356-022-20167-4.

[24] T. Hu, Q. Liu, T. Gao, K. Dong, G. Wei, and J. Yao, “Facile Preparation of Tannic Acid–Poly(vinyl alcohol)/Sodium Alginate Hydrogel Beads for Methylene Blue Removal from Simulated Solution,” ACS Omega, vol. 3, no. 7, pp. 7523–7531, Jul. 2018. Available: doi: 10.1021/acsomega.8b00577.

[25] S. F. F. Azha, A. L. L. Ahmad, and S. Ismail, “Thin coated adsorbent layer: characteristics and performance study,” Desalin. Water Treat., vol. 55, no. 4, pp. 956–969, Jul. 2015. Available: doi: 10.1080/19443994.2014.922502.

[26] A. Nasar and F. Mashkoor, “Application of polyaniline-based adsorbents for dye removal from water and wastewater—a review,” Environ. Sci. Pollut. Res., vol. 26, no. 6, pp. 5333–5356, Feb. 2019. Available: doi: 10.1007/s11356-018-3990-y.

[27] A. Benhouria, H. Zaghouane-Boudiaf, R. Bourzami, F. Djerboua, B. H. Hameed, and M. Boutahala, “Cross-linked chitosan-epichlorohydrin/bentonite composite for reactive orange 16 dye removal: Experimental study and molecular dynamic simulation,” Int. J. Biol. Macromol., vol. 242, p. 124786, Jul. 2023. Available: doi: 10.1016/j.ijbiomac.2023.124786.

[28] M. H. Dehghani, S. Afsari Sardari, M. Afsharnia, M. Qasemi, and M. Shams, “Removal of toxic lead from aqueous solution using a low-cost adsorbent,” Sci. Rep., vol. 13, no. 1, p. 3278, Feb. 2023. Available: doi: 10.1038/s41598-023-29674-x.

[29] O. B. Nchoe, S. O. Sanni, E. L. Viljoen, A. Pholosi, and V. E. Pakade, “Surfactant-modified Macadamia nutshell for enhancement of methylene blue dye adsorption from aqueous media,” Case Stud. Chem. Environ. Eng., vol. 8, p. 100357, Dec. 2023. Available: doi: 10.1016/j.cscee.2023.100357.