Norfaezatul Alysa Othman Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia Norain Isa Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Nurulhuda Amri Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia Nor Aimi Abdul Wahab Department of Applied Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia Nurulhuda Bashirom School of Materials Engineering, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis, Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia |
|
Abstract | |
This study investigates the effect of voltage on the removal of polypropylene microplastics (PPMPs) from artificial wastewater via an electrocoagulation (EC) process using iron (Fe) electrodes. The effect of the voltage was investigated by conducting multiple continuous flow experiments at three different voltage values (10, 20, and 30 V). The findings demonstrated that the turbidity value increased gradually as the initial voltage increased, from 6.67 NTU at 10 V to 74.37 NTU at 30 V. In this EC process, in which Fe electrodes are utilized to remove the PPMPs, it is believed that 20 V provides optimal support. Kinetic studies showed that the process followed a first-order kinetic model with a kinetics rate constant (k) of 0.0143 min-1 and a coefficient of determination (R2) of 0.9702. The findings demonstrated that voltage is a significant parameter in the EC process employing Fe electrodes to remove PPMPs from wastewater. | |
Keyword: Electrocoagulation, Fe electrode, Polypropylene microplastics, Removal efficiency, Voltage | |
References: | |
[1] M. B. Ahmed et al., “Microplastic particles in the aquatic environment: A systematic review,” Sci. Total Environ., vol. 775, 2021. Available: doi: 10.1016/j.scitotenv.2021.145793. [2] Y. Zhang et al., “Coagulation removal of microplastics from wastewater by magnetic magnesium hydroxide and PAM,” J. Water Process Eng., vol. 43, p. 102250, 2021. Available: https://doi.org/10.1016/j.jwpe.2021.102250. [3] K. H. D. Tang and T. Hadibarata, “The application of bioremediation in wastewater treatment plants for microplastics removal: a practical perspective,” Bioprocess Biosyst. Eng., vol. 45, no. 11, pp. 1865–1878, 2022. Available: 10.1007/s00449-022-02793-x. [4] V. Inderan et al., “Hydrothermal Synthesis of Co And Pd Doped Tin Oxide Nanorods and Their Photocatalytic Degradation of Polypropylene,” Malaysian J. Anal. Sci., vol. 27, no. 1, pp. 54–62, 2023. [5] L. R. Xuen, N. Isa, K. A. Razak, M. Jaafar, and Z. Lockman, “Silver Nanoparticles/Titanium Dioxide Nanowires Photocatalyst Formation for Microplastic Removal Using Ultraviolet Radiation,” Solid State Phenom., vol. 352, pp. 67–74, 2023. Available: 10.4028/p-aS0wOb. [6] N. A. A. Wahab, N. K. N. H. M. Jackariya, N. Isa, N. A. Othman, V. Inderan, and N. F. A. Kassim, “The Effects of pH On Microplastics Removal by Electrocoagulation Process using Nickel Electrode,” Malaysian J. Anal. Sci., vol. 27, no. 4, pp. 693–701, 2023. [7] M. Shen et al., “Efficient removal of microplastics from wastewater by an electrocoagulation process,” Chem. Eng. J., vol. 428, no. July 2021, p. 131161, 2022, doi: 10.1016/j.cej.2021.131161. [8] I. D. Tegladza, Q. Xu, K. Xu, G. Lv, and J. Lu, “Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal,” Process Saf. Environ. Prot., vol. 146, pp. 169–189, 2021. Available: 10.1016/j.psep.2020.08.048. [9] Y. Hu, L. Zhou, J. Zhu, and J. Gao, “Efficient removal of polyamide particles from wastewater by electrocoagulation,” vol. 51, no. December 2022, 2023. Available: 10.1016/j.jwpe.2022.103417. [10] M. Y. A. Mollah, R. Schennach, J. R. Parga, and D. L. Cocke, “Electrocoagulation (EC)—science and applications,” J. Hazard. Mater., vol. 84, no. 1, pp. 29–41, 2001. [11] N. Isa et al., “Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye,” J. Appl. Electrochem., vol. 52, no. 1, pp. 173–188, 2022. Available: 10.1007/s10800-021-01644-z. [12] N. Isa, T. W. Kian, G. Kawamura, A. Matsuda, and Z. Lockman, “Synthesis of TiO2 Nanotubes Decorated with Ag Nanoparticles (TNTs/AgNPs) For Visible Light Degradation of Methylene Blue,” in Journal of Physics: Conference Series, p. 12105, 2018. Available: 10.1088/1742-6596/1082/1/012105 [13] N. Huda, A. A. A. Raman, M. M. Bello, and S. Ramesh, “Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization,” J. Environ. Manage., vol. 204, pp. 75–81, 2017. [14] M. Shen et al., “Removal of microplastics via drinking water treatment: Current knowledge and future directions,” Chemosphere, vol. 251, p. 126612, 2020. Available: 10.1016/j.chemosphere.2020.126612. [15] M. Shen et al., “Efficient removal of microplastics from wastewater by an electrocoagulation process,” Chem. Eng. J., vol. 428, p. 131161, 2022. [16] Y. Gao and Y. Liu, “Removal of microplastics by coagulation treatment in waters and prospect of recycling of separated microplastics: A mini-review,” J. Environ. Chem. Eng., p. 108197, 2022. [17] S. Xu, J. Ma, R. Ji, K. Pan, and A.-J. Miao, “Microplastics in aquatic environments: occurrence, accumulation, and biological effects,” Sci. Total Environ., vol. 703, p. 134699, 2020. [18] S. Sharma, S. Basu, N. P. Shetti, M. N. Nadagouda, and T. M. Aminabhavi, “Microplastics in the environment: Occurrence, perils, and eradication,” Chem. Eng. J., vol. 408, 2021. Available: 10.1016/j.cej.2020.127317. [19] C. Akarsu, H. Kumbur, and A. E. Kideys, “Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes,” Water Sci. Technol., vol. 84, no. 7, pp. 1648–1662, 2021. Available: 10.2166/wst.2021.356. [20] H. A. Moreno C et al., “Electrochemical reactions for electrocoagulation using iron electrodes,” Ind. \& Eng. Chem. Res., vol. 48, no. 4, pp. 2275–2282, 2009. [21] F. Liu et al., “A systematic review of electrocoagulation technology applied for microplastics removal in aquatic environment,” Chem. Eng. J., vol. 456, p. 141078, 2023. [22] J. Yu, Y. Liu, H. Wang, Q. Yan, and J. Luo, “Insight into the corrosion inhibition of the iron anode with electro-deposited polyaniline during the electrocoagulation treatment process of electroplating wastewater,” Environ. Sci. Water Res. \& Technol., vol. 9, no. 2, pp. 406–418, 2023. [23] N. B. Turan, H. S. Erkan, and G. O. Engin, “Microplastics in wastewater treatment plants: Occurrence, fate and identification,” Process Saf. Environ. Prot., vol. 146, pp. 77–84, 2021. [24] A. Cristaldi et al., “Efficiency of wastewater treatment plants (WWTPs) for microplastic removal: A systematic review,” Int. J. Environ. Res. Public Health, vol. 17, no. 21, p. 8014, 2020. [25] M. Shen, T. Hu, W. Huang, B. Song, G. Zeng, and Y. Zhang, “Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: Performance, mechanism and utilization,” Chem. Eng. J., vol. 421, no. P1, p. 129918, 2021. Available: 10.1016/j.cej.2021.129918. [26] A. R. Lado Ribeiro, N. F. F. Moreira, G. Li Puma, and A. M. T. Silva, “Impact of water matrix on the removal of micropollutants by advanced oxidation technologies,” Chem. Eng. J., vol. 363, no. January, pp. 155–173, 2019. Available: 10.1016/j.cej.2019.01.080. |