HOME: Online Issues

Insight into the physical and chemical attributes of polypropylene microplastics

E-mail Print PDF

sep2024

Nor Ku Nazatul Husna Mohd Jackariya

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nor Aimi Abdul Wahab

Department of Applied Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Norain Isa

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Norfaezatul Alysa Othman

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nor Ayuni Zamri

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Vicinisvarri Inderan

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Abstract

Microplastics (MPs) are increasingly recognised for their significant impact on the environment and human health. Understanding MPs is crucial to grasp their widespread presence in various environmental areas. The unique properties of MPs, such as their small size, durability, and potential to adsorb and transport environmental pollutants, underscore the necessity of studying their characteristics. This study aims to investigate the physical and chemical characteristics of polypropylene microplastics (PPMPs) and address the dispersion stability issues associated with them. The PPMPs were characterised using scanning electron microscopy (SEM), revealing a surface structure marked by cracks, fractures, and a rough texture. The PPMPs were observed as irregularly shaped, white particles. Their size distribution spans from 14 to 96 µm, with a mean size of 50.00 µm. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of polypropylene functional groups, specifically identifying characteristic peaks at 2952-2846 cm-1 and 1456 -1376 cm-1, indicating C-H stretching and bending vibrations, respectively, with additional peaks suggesting degradation. The effect of different concentrations of sodium lauryl sulfate (SLS) on PPMPs dispersion indicated that 5% SLS led to superior dispersion of PPMPs, thereby addressing the stability issue. These findings provide comprehensive insights into the physical and chemical attributes of PPMPs and their dispersion stability, offering a foundation for informed environmental assessments and the development of effective mitigation strategies.

pdf

Keyword: Physical Attributes, Chemical Attributes, Polypropylene, Microplastics, Size Surfactant

DOI: 10.24191/esteem.v20iSeptember.602.g1545

References:

[1]T. Walker, D. Gramlich, and A. Dumont-Bergeron, “The Case for a Plastic Tax: A Review of Its Benefits and Disadvantages Within a Circular Economy,” Sustainability, pp. 185–211. 2020. Available: doi: 10.1108/S2514-175920200000004010.

[2] J. R. Jambeck et al., “Entradas de residuos plásticos desde la tierra al océano,” Ciencia, vol. 347, no. 6223, pp. 768–771, 2015.

[3] C. Akarsu, H. Kumbur, and A. E. Kideys, “Removal of microplastics from wastewater through electrocoagulation-electroflotation and membrane filtration processes,” Water Sci. Technol., vol. 84, no. 7, pp. 1648–1662, 2021. Available: doi: 10.2166/wst.2021.356.

[4] O. D. Agboola and N. U. Benson, “Physisorption and Chemisorption Mechanisms Influencing Micro (Nano) Plastics-Organic Chemical Contaminants Interactions: A Review,” Front. Environ. Sci., vol. 9, no. May, pp. 1–27, 2021. Available: doi: 10.3389/fenvs.2021.678574.

[5] Y. Zhang et al., “Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids,” Sci. Total Environ., vol. 800, no. 2, p. 149589, 2021. Available: doi: 10.1016/j.scitotenv.2021.149589.

[6] Y. Hu, L. Zhou, J. Zhu, and J. Gao, “Efficient removal of polyamide particles from wastewater by electrocoagulation,” vol. 51, no. 2023. Available: doi: 10.1016/j.jwpe.2022.103417.

[7] Y. Xiong et al., “Interfacial interaction between micro/nanoplastics and typical PPCPs and nanoplastics removal via electrosorption from an aqueous solution,” Water Res., vol. 184, p. 116100, 2020. Available: doi: 10.1016/j.watres.2020.116100.

[8] M. Lapointe, J. M. Farner, L. M. Hernandez, and N. Tufenkji, “Understanding and Improving Microplastic Removal during Water Treatment: Impact of Coagulation and Flocculation,” Environ. Sci. Technol., vol. 54, no. 14, pp. 8719–8727, 2020. Available: doi: 10.1021/acs.est.0c00712.

[9] B. Ma, W. Xue, Y. Ding, C. Hu, H. Liu, and J. Qu, “Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment,” J. Environ. Sci., vol. 78, pp. 267–275, 2019.

[10] S. Shabbir et al., “Periphytic biofilm: An innovative approach for biodegradation of microplastics,” Sci. Total Environ., vol. 717, 2020. Available: doi: 10.1016/j.scitotenv.2020.137064.

[11] M. Shen et al., “Removal of microplastics via drinking water treatment: Current knowledge and future directions,” Chemosphere, vol. 251, p. 126612, 2020. Available: doi: 10.1016/j.chemosphere.2020.126612.

[12] H. S. Auta, C. U. Emenike, and S. H. Fauziah, “Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation,” Environ. Pollut., vol. 231, pp. 1552–1559, 2017. Available: doi: 10.1016/j.envpol.2017.09.043.

[13] S. Hamzah et al., “Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105894, 2021. Available: doi: 10.1016/j.jece.2021.105894.

[14] R. Verma, S. Singh, M. K. Dalai, M. Saravanan, V. V. Agrawal, and A. K. Srivastava, “Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation,” Mater. Des., vol. 133, pp. 10–18, 2017. Available: doi: 10.1016/j.matdes.2017.07.042.

[15] L. Ding et al., “The photodegradation processes and mechanisms of polyvinyl chloride and polyethylene terephthalate microplastic in aquatic environments: Important role of clay minerals,” Water Res., vol. 208, no. October 2021, p. 117879, 2022. Available: doi: 10.1016/j.watres.2021.117879.

[16] A. Uheida, H. G. Mejía, M. Abdel-Rehim, W. Hamd, and J. Dutta, “Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system,” J. Hazard. Mater., vol. 406, no. September 2020, p. 124299, 2021. Available: doi: 10.1016/j.jhazmat.2020.124299.

[17] L. R. Xuen, N. Isa, K. A. Razak, M. Jaafar, and Z. Lockman, “Silver Nanoparticles/Titanium Dioxide Nanowires Photocatalyst Formation for Microplastic Removal Using Ultraviolet Radiation,” Solid State Phenom., vol. 352, pp. 67–74, 2023. Available: doi: 10.4028/p-aS0wOb.

[18] V. Inderan et al., “Hydrothermal Synthesis Of Co And Pd Doped Tin Oxide Nanorods And Their Photocatalytic Degradation Of Polypropylene,” Malaysian J. Anal. Sci., vol. 27, no. 1, pp. 54–62, 2023.

[19] W. Perren, A. Wojtasik, and Q. Cai, “Removal of Microbeads from Wastewater Using Electrocoagulation,” ACS Omega, vol. 3, no. 3, pp. 3357–3364, 2018. Available: doi: 10.1021/acsomega.7b02037.

[20] D. Elkhatib, V. Oyanedel-Craver, and E. Carissimi, “Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities,” Sep. Purif. Technol., vol. 276, p. 118877, 2021.

[21] N. A. A. Wahab, N. K. N. H. M. Jackariya, N. Isa, N. A. Othman, V. Inderan, and N. F. A. Kassim, “The Effects Of Ph On Microplastics Removal By Electrocoagulation Process Using Nickel Electrode,” Malaysian J. Anal. Sci., vol. 27, no. 4, pp. 693–701, 2023.

[22] A. Singh, J. D. Van Hamme, and O. P. Ward, “Surfactants in microbiology and biotechnology: Part 2. Application aspects,” Biotechnol. Adv., vol. 25, no. 1, pp. 99–121, 2007.

[23] J. D. Van Hamme, A. Singh, and O. P. Ward, “Physiological aspects: Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology,” Biotechnol. Adv., vol. 24, no. 6, pp. 604–620, 2006.

[24] Z. M. Wang, J. Wagner, S. Ghosal, G. Bedi, and S. Wall, “SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts,” Sci. Total Environ., vol. 603–604, pp. 616–626, 2017. Available: doi: 10.1016/j.scitotenv.2017.06.047.

[25] P. Wardrop et al., “Chemical Pollutants Sorbed to Ingested Microbeads from Personal Care Products Accumulate in Fish,” Environ. Sci. Technol., vol. 50, no. 7, pp. 4037–4044, 2016. Available: doi: 10.1021/acs.est.5b06280.

[26] S. L. Wright, R. C. Thompson, and T. S. Galloway, “The physical impacts of microplastics on marine organisms: a review,” Environ. Pollut., vol. 178, pp. 483–492, 2013.

[27] Y. Nakazawa, Y. Matsui, Y. Hanamura, K. Shinno, N. Shirasaki, and T. Matsushita, “Identifying, counting, and characterizing superfine activated-carbon particles remaining after coagulation, sedimentation, and sand filtration,” Water Res., vol. 138, pp. 160–168, 2018.

[28] X. Wang, Z. Li, X. Tong, and X. Ge, “The influence of particle shape on screening: Case studies regarding DEM simulations,” Eng. Comput., vol. 35, no. 3, pp. 1512–1527, 2018.

[29] S. Magni et al., “The fate of microplastics in an Italian Wastewater Treatment Plant,” Sci. Total Environ., vol. 652, pp. 602–610, 2019.

[30] A. Abbasi, P. Sadeghi, and Z. Taghizadeh Rahmat Abadi, “Characterization of microplastics in digestive tract of commercial fish species from the Oman Sea,” Mar. Pollut. Bull., vol. 197, no. November, p. 115769, 2023. Available: doi: 10.1016/j.marpolbul.2023.115769.

[31] I. Can Tunçelli and N. Erkan, “Microplastic pollution in wild and aquacultured Mediterranean mussels from the Sea of Marmara: Abundance, characteristics, and health risk estimations,” Environ. Res., vol. 242, no. October 2023, 2024. Available: doi: 10.1016/j.envres.2023.117787.

[32] U. R. Gurjar et al., “Microplastics in shrimps: a study from the trawling grounds of north eastern part of Arabian Sea,” Environ. Sci. Pollut. Res., vol. 28, no. 35, pp. 48494–48504, 2021. Available: doi: 10.1007/s11356-021-14121-z.

[33] A. Paço et al., “Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum,” Sci. Total Environ., vol. 586, pp. 10–15, 2017. Available: doi: 10.1016/j.scitotenv.2017.02.017.

[34] S. Arossa, C. Martin, S. Rossbach, and C. M. Duarte, “Microplastic removal by Red Sea giant clam (Tridacna maxima),” Environ. Pollut., vol. 252, pp. 1257–1266, 2019. Available: doi: 10.1016/j.envpol.2019.05.149.

[35] J. Li, X. Chen, S. Yu, and M. Cui, “Removal of pristine and aged microplastics from water by magnetic biochar: Adsorption and magnetization,” Sci. Total Environ., vol. 875, no. January, p. 162647, 2023. Available: doi: 10.1016/j.scitotenv.2023.162647.

[36] S. S. Palaskar, “Adhesion properties of polypropylene fabric treated with atmospheric pressure plasma and coated with polyurethane: Studies on ageing process,” Int. J. Adhes. Adhes., vol. 125, no. June, p. 103428, 2023. Available: doi: 10.1016/j.ijadhadh.2023.103428.

[37] L. J. J. Meijer, T. van Emmerik, R. van der Ent, C. Schmidt, and L. Lebreton, “More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean,” Sci. Adv., vol. 7, no. 18, pp. 1–14, 2021. Available: doi: 10.1126/sciadv.aaz5803.

[38] L. Liu, H. Ma, and B. Xing, “Chemosphere Aging and characterization of disposable polypropylene plastic cups based microplastics and its adsorption for methylene blue,” Chemosphere, vol. 349, no. December 2023, p. 140976, 2024. Available: doi: 10.1016/j.chemosphere.2023.140976.

[39] N. A. Othman, N. Isa, N. Amri, N. A. Abdul Wahab, and N. Bashirom, “The effect of voltage on polypropylene microplastics removal by electrocoagulation process using Fe electrode,” ESTEEM Acad. J., vol. 20, no. March, pp. 54–64, 2024. Available: doi: 10.24191/esteem.v20imarch.610.g535.

[40] Y. Jiang, X. Yin, X. Xi, D. Guan, H. Sun, and N. Wang, “Effect of surfactants on the transport of polyethylene and polypropylene microplastics in porous media,” Water Res., vol. 196, p. 117016, 2021.

[41] A. M. N. A. Abdul Rahman et al., “Surface interactions of model microplastic particles in seawater,” Prog. Rubber, Plast. Recycl. Technol., vol. 39, no. 1, pp. 3–11, 2023.

[42] A. Khoironi, H. Hadiyanto, S. Anggoro, and S. Sudarno, “Evaluation of polypropylene plastic degradation and microplastic identification in sediments at Tambak Lorok coastal area, Semarang, Indonesia,” Mar. Pollut. Bull., vol. 151, no. December 2019, p. 110868, 2020. Available: doi: 10.1016/j.marpolbul.2019.110868.

[43] W. He, X. Chen, C. Xu, C. Zhou, and C. Wang, “Internal interaction between chemically-pretreated polypropylene microplastics and floc growth during flocculation: Critical effect on floc properties and flocculation mechanisms,” Sep. Purif. Technol., vol. 306, no. PB, p. 122710, 2023. Available: doi: 10.1016/j.seppur.2022.122710.

[44] M. Luo et al., “Removal and toxic forecast of microplastics treated by electrocoagulation: Influence of dissolved organic matter,” Chemosphere, vol. 308, no. P1, p. 136309, 2022. Available: doi: 10.1016/j.chemosphere.2022.136309.

[45] M. Shen et al., “Efficient removal of microplastics from wastewater by an electrocoagulation process,” Chem. Eng. J., vol. 428, no. July 2021, p. 131161, 2022, doi: 10.1016/j.cej.2021.131161.

[46] Y. Jiang et al., “Transport of different microplastics in porous media: Effect of the adhesion of surfactants on microplastics,” Water Res., vol. 215, no. January, 2022. Available: doi: 10.1016/j.watres.2022.118262.

[47] H. Sun et al., “Effect of cationic, anionic and non-ionic surfactants on transport of microplastics: Role of adhesion of surfactants on the polyethylene surface,” J. Hydrol., vol. 612, no. PA, p. 128051, 2022. Available: doi: 10.1016/j.jhydrol.2022.128051.

[48] M. Shen, B. Song, G. Zeng, Y. Zhang, F. Teng, and C. Zhou, “Surfactant changes lead adsorption behaviors and mechanisms on microplastics,” Chem. Eng. J., vol. 405, no. September 2020, p. 126989, 2021. Available: doi: 10.1016/j.cej.2020.126989.

[49] M. Shen, T. Hu, W. Huang, B. Song, G. Zeng, and Y. Zhang, “Removal of microplastics from wastewater with aluminosilicate filter media and their surfactant-modified products: Performance, mechanism and utilization,” Chem. Eng. J., vol. 421, no. P1, p. 129918, 2021. Available: doi: 10.1016/j.cej.2021.129918.

[50] Y. Xia, J.-J. Zhou, Y.-Y. Gong, Z.-J. Li, and E. Y. Zeng, “Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants,” Environ. Pollut., vol. 265, p. 115061, 2020.