HOME: Online Issues

Predicted kinetic behaviour of the oxidative degradation of organic pollutant using substituted MeCuFeO3(Me = Ca, Sr, CaSr) perovskite catalysts

E-mail Print PDF

sep2024

Rasyidah Alrozi

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nor Aida Zubir

Hybrid Nanomaterials, Interfaces & Simulation (HYMFAST), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Pulau Pinang, Malaysia

Noor Fitrah Abu Bakar

School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA Shah Alam, 40450, Shah Alam, Selangor, Malaysia

Julius Motuzas

The University of Queensland, FIM2LAB-Functional Interfacial Materials and Membranes Laboratory, School of Chemical Engineering, Brisbane, Qld 4072, Australia

Noor Hana Hanif Abu Bakar

Nanoscience Research Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia

David Wang

School of Chemical and Biomolecular Engineering, The University of Sydney, New South Wales, 2006, Australia

Abstract

The substitution of different types of A-site metal cations within the perovskite structure leads to a change in the catalytic activity of the resultant catalyst, which subsequently affects the overall kinetic behaviour of the degradation of organic pollutants. Hence, understanding the kinetics behaviour of the substituted perovskite catalysis is crucial for determining the reaction rates of the degradation process.  This study investigates the catalytic performance and kinetic analysis of substituted MeCuFeO3 (Me = Ca, Sr, CaSr) perovskite catalysts in the oxidation of organic pollutants, namely acid orange II (AOII) dye. The highest AOII degradation was achieved by CaCuFeO3 (97 %) followed by CaSrCuFeO3 (95 %) and SrCuFeO3 (91 %) within 60 min of reaction in the presence of oxidant (H2O2). Interestingly, the AOII oxidation by CaCuFeO3 followed a pseudo-second-order kinetic model while SrCuFeO3 and CaSrCuFeO3 were fitted to the BMG kinetic model. The reaction rate constant of CaCuFeO3 (k = 1.9 × 10?2 L.mg?1.min?1) was higher by a magnitude of two and three than that of CaSrCuFeO3 (k = 9.4 × 10?3 L.mg?1.min?1) and SrCuFeO3 (k = 6.3 ×10?3 L.mg?1.min?1), respectively. These results indicate that the partial substitution of Sr in the A-site of CaCuFeO3 leads to a slight deterioration in the overall catalytic performance of the oxidative degradation of AOII, which contributes to a change in the behaviour of the reaction kinetic models.

pdf

Keyword: Kinetic, A-site cation, perovskite catalyst, oxidation, organic pollutant

DOI: 10.24191/esteem.v20iSeptember.615.g1546

References:

[1]          V. Chandanshive, S. Kadam, N. Rane, B. Jeon, J. Jadhav, and S. Govindwar, “In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds,” Chemosphere, vol. 252, p. 126513, 2020. Available: doi: 10.1016/j.chemosphere.2020.126513.

[2]          R. Al-Tohamy et al., “A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety,” Ecotoxicol. Environ. Saf., vol. 231, p. 113160, 2022. Available: doi: 10.1016/j.ecoenv.2021.113160.

[3]          S. K. Kamal and A. S. Abbas, “Fenton oxidation reaction for removing organic contaminants in synesthetic refinery wastewater using heterogeneous Fe-Zeolite?: An experimental study , optimization , and simulation,” Case Stud. Chem. Environ. Eng., vol. 8, p. 100458, 2023. Available: doi: 10.1016/j.cscee.2023.100458.

[4]          R. Pelalak, A. Hassani, Z. Heidari, and M. Zhou, “State-of-the-art recent applications of layered double hydroxides (LDHs) material in Fenton-based oxidation processes for water and wastewater treatment,” Chem. Eng. J., vol. 474, p. 145511, 2023. Available: doi: 10.1016/j.cej.2023.145511.

[5]          H. Liu, X. Li, X. Zhang, F. Coulon, and C. Wang, “Harnessing the power of natural minerals: A comprehensive review of their application as heterogeneous catalysts in advanced oxidation processes for organic pollutant degradation,” Chemosphere, vol. 337, no. June, p. 139404, 2023. Available: doi: 10.1016/j.chemosphere.2023.139404.

[6]          M. F. Hanafi and N. Sapawe, “A review on the current techniques and technologies of organic pollutants removal from water/wastewater,” Mater. Today Proc., vol. 31, no. 2020, pp. A158–A165, 2021. Available: doi: 10.1016/j.matpr.2021.01.265.

[7]          M. Zhang, H. Dong, L. Zhao, D. Wang, and D. Meng, “A review on Fenton process for organic wastewater treatment based on optimization perspective,” Sci. Total Environ., vol. 670, pp. 110–121, 2019. Available: doi: 10.1016/j.scitotenv.2019.03.180.

[8]          M. Bartolomeu, M. G. P. M. S. Neves, M. A. F. Faustino, and A. Almeida, “Wastewater chemical contaminants: remediation by Advanced Oxidation Processes,” Photochem. Photobiol. Sci., vol. 17, pp. 1573–1598, 2018. Available: doi: 10.1039/C8PP00249E.

[9]          H. Yu, J. Ji, Q. Yan, and M. Xing, “Transition metal phosphides for heterogeneous Fenton-like oxidation of contaminants in water,” Chem. Eng. J., vol. 449, p. 137856, 2022. Available: doi: 10.1016/j.cej.2022.137856.

[10]        N. Li et al., “H2O2 activation and contaminants removal in heterogeneous Fenton-like systems,” J. Hazard. Mater., vol. 458, p. 131926, 2023. Available: doi: 10.1016/j.jhazmat.2023.131926.

[11]        N. N. A. Abdul Rahman et al., “B-site Substitution Effects on the Catalytic Activity of Perovskites Compounds towards Oxidative Degradation of Orange II Solutions,” IOP Conf. Ser. Mater. Sci. Eng., vol. 864, no. 1, 2020. Available: doi: 10.1088/1757-899X/864/1/012001.

[12]        S. Sharma, U. Manhas, I. Qadir, A. K. Atri, S. Singh, and D. Singh, “A comparative study of structural, magnetic and catalytic properties of half doped nanocrystalline La0.5A0.5Mn0.5Fe0.5O3 (A = Ca, Sr) perovskite oxides: Highly efficient and versatile candidates for enhanced oxidative degradation of hazardous organic dyes,” Mater. Chem. Phys., vol. 306, no. June, p. 128033, 2023. Available: doi: 10.1016/j.matchemphys.2023.128033.

[13]        C. Cheng, S. Gao, J. Zhu, G. Wang, L. Wang, and X. Xia, “Enhanced performance of LaFeO3 perovskite for peroxymonosulfate activation through strontium doping towards 2,4-D degradation,” Chem. Eng. J., vol. 384, no. October 2019, p. 123377, 2020. Available: doi: 10.1016/j.cej.2019.123377.

[14]        C. Wang, S. Gao, J. Zhu, X. Xia, M. Wang, and Y. Xiong, “Enhanced activation of peroxydisulfate by strontium modified BiFeO3perovskite for ciprofloxacin degradation,” J. Environ. Sci. (China), vol. 99, pp. 249–259, 2021. Available: doi: 10.1016/j.jes.2020.04.026.

[15]        H. Chen, J. Motuzas, W. Martens, and J. C. Diniz da Costa, “Degradation of azo dye Orange II under dark ambient conditions by calcium strontium copper perovskite,” Appl. Catal. B Environ., vol. 221, no. April 2017, pp. 691–700, 2018. Available: doi: 10.1016/j.apcatb.2017.09.056.

[16]        L. Xie et al., “Enhanced redox activity and oxygen vacancies of perovskite triggered by copper incorporation for the improvement of electro-Fenton activity,” Chem. Eng. J., vol. 428, no. July 2021, p. 131352, 2022. Available: doi: 10.1016/j.cej.2021.131352.

[17]        K. Pan et al., “Oxygen vacancy mediated surface charge redistribution of Cu-substituted LaFeO3 for degradation of bisphenol A by efficient decomposition of H2O2,” J. Hazard. Mater., vol. 389, no. January, p. 122072, 2020. Available: doi: 10.1016/j.jhazmat.2020.122072.

[18]        N. Riaz, F. K. Chong, B. K. Dutta, Z. B. Man, M. S. Khan, and E. Nurlaela, “Photodegradation of Orange II under visible light using Cu-Ni/TiO 2: Effect of calcination temperature,” Chem. Eng. J., vol. 185–186, pp. 108–119, 2012. Available: doi: 10.1016/j.cej.2012.01.052.

[19]        M. A. Behnajady, N. Modirshahla, and F. Ghanbary, “A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process,” J. Hazard. Mater., vol. 148, no. 1–2, pp. 98–102, 2007. Available: doi: 10.1016/j.jhazmat.2007.02.003.

[20]        S. Haji, M. Khalaf, M. Shukrallah, J. Abdullah, and S. Ahmed, “A kinetic comparative study of azo dye decolorization by catalytic wet peroxide oxidation using Fe–Y zeolite/H2O2 and photooxidation using UV/H2O2,” React. Kinet. Mech. Catal., vol. 114, no. 2, pp. 795–815, 2015. Available: doi: 10.1007/s11144-014-0810-3.

[21]        C. S. Santana, M. D. Nicodemos Ramos, C. C. Vieira Velloso, and A. Aguiar, “Kinetic Evaluation of Dye Decolorization by Fenton Processes in the Presence of 3-Hydroxyanthranilic Acid,” Int. J. Environ. Res. Public Health, vol. 16, p. 1602, 2019.

[22]        R. Alrozi et al., “Functional role of B-site substitution on the reactivity of CaMFeO3 (M = Cu, Mo, Co) perovskite catalysts in heterogeneous Fenton-like degradation of organic pollutant,” J. Taiwan Inst. Chem. Eng., vol. 143, no. January, p. 104675, 2023.

[23]        H. Chen, J. Motuzas, W. Martens, and J. C. Diniz da Costa, “Surface and catalytic properties of stable Me(Ba, Ca and Mg)SrCoO for the degradation of orange II dye under dark conditions,” Appl. Surf. Sci., vol. 450, pp. 292–300, 2018. Available: doi: 10.1016/j.apsusc.2018.04.193.

[24]        H. Chen, J. Motuzas, W. Martens, and J. C. Diniz da Costa, “Ceramic metal oxides with Ni2+ active phase for the fast degradation of Orange II dye under dark ambiance,” Ceram. Int., vol. 44, no. 6, pp. 6634–6640, 2018. Available: doi: 10.1016/j.ceramint.2018.01.071.

[25]        H. Chen, J. Motuzas, W. Martens, and J. C. Diniz Da Costa, “Effective degradation of azo dyes in the dark by Cu2+ active sites in CaSrNiCu oxides,” J. Environ. Chem. Eng., vol. 6, no. 5, pp. 5870–5878, 2018. Available: doi: 10.1016/j.jece.2018.08.060.

[26]        H. Chen, J. Motuzas, W. Martens, and J. C. Diniz da Costa, “Degradation of orange II dye under dark ambient conditions by MeSrCuO (Me?=?Mg and Ce) metal oxides,” Sep. Purif. Technol., vol. 205, no. May, pp. 293–301, 2018. Available: doi: 10.1016/j.seppur.2018.05.029.

[27]        P. Ji, J. Zhang, F. Chen, and M. Anpo, “Study of adsorption and degradation of acid orange 7 on the surface of CeO2 under visible light irradiation,” Appl. Catal. B Environ., vol. 85, no. 3–4, pp. 148–154, 2009. Available: doi: 10.1016/j.apcatb.2008.07.004.

[28]        C. S. Santana and A. Aguiar, “Effect of biological mediator, 3-hydroxyanthranilic acid, in dye decolorization by Fenton processes,” Int. Biodeterior. Biodegradation, vol. 104, pp. 1–7, 2015. Available: doi: 10.1016/j.ibiod.2015.05.007.

[29]        F. Barreto, C. S. Santana, and A. Aguiar, “Behavior of dihydroxybenzenes and gallic acid on the Fenton-based decolorization of dyes,” Desalin. Water Treat., no. October 2014, pp. 1–19, 2014. Available: doi: 10.1080/19443994.2014.966333.

[30]        P. K. Malik and S. K. Saha, “Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst,” Sep. Purif. Technol., vol. 31, pp. 241–250, 2003.