HOME: Online Issues

Magnetic graphene oxide incorporated with Fe2O3 for the removal of lead (II) ions

E-mail Print PDF

sep2024

Norhusna Mohamad Nor

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Waste Management and Resource Recovery (WeResCue) Group, Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia

Nor Alwani Ali Bashah

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nor  Syazwani Mohamed Noor

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nur Afifah Atikah Yaakob

Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

 

Abstract

The objective of this research work is to synthesise graphene oxide (GO) with iron oxide (Fe2O3) nanoparticles as a magnetic adsorbent for lead ion (Pb2+) removal. In this work, the effect of synthesis parameters of GO/Fe2O3 (Fe2O3 loading weight ratio, synthesis time and calcination temperature) and adsorption parameters (initial Pb2+ concentration, adsorption temperature and contact time) on  Pb2+ removal were investigated. The adsorption experiment was carried out in a batch system, and the synthesised GO/Fe2O3 adsorbent was characterised using TGA and N2 sorption-desorption analyses. The adsorption characteristics of Pb2+ using GO/Fe2O3 adsorbent were analysed using adsorption isotherms and kinetic study. The optimal synthesis parameters were found to be a  1:0.5 ratio for GO/Fe2O3, a synthesis time of 60 min and  a calcination temperature of 400°C,  resulting in a Pb2+ removal rate of 96% and adsorption capacity of 49.85 mg Pb2+/g adsorbent. The GO/Fe2O3 adsorbent synthesised at 400°C and a 1:0.5 ratio exhibits  a larger surface area and smaller pore diameter, 98.20 m2/g and 15.67 nm, respectively, compared to other samples. Increasing the synthesis temperature decreases the growth and formation of GO/Fe2O3, reducing the surface area. Experimental results revealed that the adsorption of Pb2+ using GO/Fe2O3 adsorbent fitted the pseudo-second-order kinetic and was best described by the Langmuir isotherm with a high correlation coefficient (R2 >0.99).

pdf

Keyword: Adsorption, Fe2O3 impregnation, Graphene oxide, Pb2+ removal, Wastewater, Isotherms

DOI: 10.24191/esteem.v20iSeptember.2924.g1578

References:

[1]          T. N. B. T. Ibrahim, F. Othman, and N. Z. Mahmood, “Baseline Study of Heavy Metal Pollution in a Tropical River in a Developing Country,” Sains Malaysiana, vol. 49, no. 4, pp. 729–742, 2020. Available: doi: 10.17576/jsm-2020-4904-02.

[2]          L. Alam, “A Review on Lead (Pb) Contamination in the Drinking Water Supply at Langat River Basin, Malaysia,” MOJ Toxicol., vol. 3, no. 3, pp. 49–51, 2017. Available: doi: 10.15406/mojt.2017.03.00051.

[3]          Department of Environment Malaysia, “Environmental Quality (Sewage and Industrial Effluents) Regulations, 1979,” 1979.

[4]          B. Han, C. Butterly, W. Zhang, J. Zheng He, and D. Chen, “Adsorbent materials for ammonium and ammonia removal: A review,” J. Clean. Prod., vol. 283, p. 124611, 2021. Available:  doi: 10.1016/j.jclepro.2020.124611.

[5]          B. Kamal and A. Rafey, “A mini-review of treatment methods for lead removal from wastewater,” Int. J. Environ. Anal. Chem., vol. 00, no. 00, pp. 1–16, 2021. Available: doi: 10.1080/03067319.2021.1934833.

[6]          I. R. Chowdhury, S. Chowdhury, M. A. J. Mazumder, and A. Al-Ahmed, Removal of lead ions (Pb2+) from water and wastewater: a review on the low-cost adsorbents, vol. 12, no. 8. Springer International Publishing, 2022.

[7]          Renu, M. Agarwal, and K. Singh, “Heavy metal removal from wastewater using various adsorbents: A review,” J. Water Reuse Desalin., vol. 7, no. 4, pp. 387–419, 2017. Available: doi: 10.2166/wrd.2016.104.

[8]          N. R. Nik Abdul Ghani, Mohammed Saedi Jami, and K. M. Z. Ku Abdullah, “Adsorption Studies of Graphene Oxide for Lead Removal From Synthetic Wastewater,” Biol. Nat. Resour. Eng. J., vol. 2, no. 2 SE-Bioenvironmental Engineering, pp. 21–36, 2019.

[9]          N. G. Khaligh and M. R. Johan, “Recent Advances in Water Treatment Using Graphene-based Materials,” Mini. Rev. Org. Chem., vol. 17, no. 1, pp. 74–90, 2019. Available: doi: 10.2174/1570193x16666190516114023.

[10]        J. Wang et al., “Synthesis Approaches to Magnetic Graphene Oxide and Its Application in Water Treatment: A Review,” Water. Air. Soil Pollut., vol. 232, no. 8, 2021. Available: doi: 10.1007/s11270-021-05281-2.

[11]        B. M. Jun et al., “Comprehensive evaluation on removal of lead by graphene oxide and metal organic framework,” Chemosphere, vol. 231, pp. 82–92, 2019. Available: doi: 10.1016/j.chemosphere.2019.05.076.

[12]        M. Saghi, K. Mahanpoor, and H. Shafiei, “Preparation of nano spherical ?-Fe2O3 supported on 12-tungstosilicic acid using two different methods: A novel catalyst,” Iran. J. Chem. Chem. Eng., vol. 37, no. 1, pp. 1–10, 2018.

[13]        L. T. M. Thy, P. M. Cuong, T. H. Tu, H. M. Nam, N. H. Hieu, and M. T. Phong, “Fabrication of magnetic iron oxide/graphene oxide nanocomposites for removal of lead ions from water,” Chem. Eng. Trans., vol. 78, pp. 277–282, 2020. Available: doi: 10.3303/CET2078047.

[14]        R. Kumar, S. Bhattacharya, and P. Sharma, “Novel insights into adsorption of heavy metal ions using magnetic graphene composites,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 106212, 2021. Available: doi: 10.1016/j.jece.2021.106212.

[15]        M. Jafari Eskandari and I. Hasanzadeh, “Size-controlled synthesis of Fe3O4 magnetic nanoparticles via an alternating magnetic field and ultrasonic-assisted chemical co-precipitation,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 266, no. October 2020, p. 115050, 2021. Available: doi: 10.1016/j.mseb.2021.115050.

[16]        M. Mukherjee et al., “Ultrasonic assisted graphene oxide nanosheet for the removal of phenol containing solution,” Environ. Technol. Innov., Jan. 2017. Available: doi: 10.1016/J.ETI.2016.11.006.

[17]        A. F. Shaaban, A. A. Khalil, B. S. Elewa, M. N. Ismail, and U. M. Eldemerdash, “A new modified exfoliated graphene oxide for removal of copper(II), lead(II) and nickel(II) ions from aqueous solutions,” Egypt. J. Chem., vol. 62, no. 10, pp. 1823–1849, 2019. Available: doi: 10.21608/EJCHEM.2019.11060.1713.

[18]        S. Mohan, V. Kumar, D. K. Singh, and S. H. Hasan, “Effective removal of lead ions using graphene oxide-MgO nanohybrid from aqueous solution: Isotherm, kinetic and thermodynamic modeling of adsorption,” J. Environ. Chem. Eng., vol. 5, no. 3, pp. 2259–2273, 2017. Available: doi: 10.1016/j.jece.2017.03.031.

[19]        Y. Yao, S. Miao, S. Liu, L. P. Ma, H. Sun, and S. Wang, “Synthesis, characterization, and adsorption properties of magnetic Fe 3O 4@graphene nanocomposite,” Chem. Eng. J., vol. 184, pp. 326–332, 2012. Available: doi: 10.1016/j.cej.2011.12.017.

[20]        H. Zengin, G. Kalayci, and G. Zengin, “Effect of Sonication in the Preparation of Activated Carbon Particles on Adsorption Performance,” Sep. Sci. Technol., vol. 49, no. 12, pp. 1807–1816, 2014. Available: doi: 10.1080/01496395.2014.902383.

[21]        L. Hou et al., “Fabrication of recoverable magnetic composite material based on graphene oxide for fast removal of lead and cadmium ions from aqueous solution,” J. Chem. Technol. Biotechnol., vol. 96, no. 5, pp. 1345–1357, 2021. Available: doi: 10.1002/jctb.6655.

[22]        H. R. Nodeh, W. A. W. Ibrahim, M. M. Sanagi, “Magnetic graphene oxide as adsorbent for the removal of lead  (II) from water sample,” Jurnal Teknologi, 78 vol. 2, pp. 25–30, 2016. Available:  https://doi.org/10.11113/jt.v78.7808

[23]        S. Z. N. Ahmad et al., “Efficient Removal of Pb(II) from Aqueous Solution using Zinc Oxide/Graphene Oxide Composite,” IOP Conf. Ser. Mater. Sci. Eng., vol. 736, no. 5, 2020. Available:, doi: 10.1088/1757-899X/736/5/052002.

[24]        T. Guo et al., “Efficient removal of aqueous Pb(II) using partially reduced graphene oxide-Fe3O4,” Adsorpt. Sci. Technol., vol. 36, no. 3–4, pp. 1031–1048, 2018. Available: doi: 10.1177/0263617417744402.

[25]        M. Alboghbeish, A. Larki, and S. J. Saghanezhad, “Effective removal of Pb(II) ions using piperazine-modified magnetic graphene oxide nanocomposite; optimization by response surface methodology,” Scientific Reports, vol. 12, no. 1. 2022. Available: doi: 10.1038/s41598-022-13959-8.

[26]        G. Ramezani, S. E. Moradi, and M. Emadi, “Removal of Pb^(2+) Ions from Aqueous Solutions by Modified Magnetic Graphene Oxide: Adsorption Isotherms and Kinetics Studies,” Iran. J. Energy Environ., vol. 11, no. 4, pp. 277–286, 2020. Available: doi: 10.5829/ijee.2020.11.04.05.

[27]        X. Yang, G. Xu, and H. Yu, “Removal of lead from aqueous solutions by ferric activated sludge-based adsorbent derived from biological sludge,” Arab. J. Chem., vol. 12, no. 8, pp. 4142–4149, 2019. Available: doi: 10.1016/j.arabjc.2016.04.017.

[28]        S. Bosu, N. Rajamohan, and M. Rajasimman, “Enhanced remediation of lead (II) and cadmium (II) ions from aqueous media using porous magnetic nanocomposites - A comprehensive review on applications and mechanism,” Environ. Res., vol. 213, no. March, p. 113720, 2022. Available: doi: 10.1016/j.envres.2022.113720.

[29]        S. Z. N. Ahmad et al., “Pb(II) removal and its adsorption from aqueous solution using zinc oxide/graphene oxide composite,” Chem. Eng. Commun., vol. 208, no. 5, pp. 646–660, 2021. Available: doi: 10.1080/00986445.2020.1715957.