HOME: Online Issues

Optimization of methylene blue dye degradation using heterogeneous Fenton-like reaction with Fe3O4 nanoparticles/PVDF macrospheres: A response surface methodology approach

E-mail Print PDF

sep2024

Mohamed Syazwan Osman

EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia.

Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.

Center of Excellence Geopolymer & Green Technology (CEGeoTech), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.

Huzairy Hassan

Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.

Sung-Ting Sam

Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.

Center of Excellence Geopolymer & Green Technology (CEGeoTech), Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia.

Nadzirah Balqis Mohd Nazeri

EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia.

Mohd Syafiq Abdul Wahab

EMZI Holding Sdn Bhd, 1st Floor, SP Plaza Tower, Jalan Ibrahim, 08000 Sungai Petani, Kedah, Malaysia

Rasyidah Alrozi

EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia.

Hafawati Rosdi

EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia.

Maya Fitriyanti

School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia.

Abstract

Microplastics (MPs) are increasingly recognised for their significant impact on the environment and human health. Understanding MPs is crucial to grasp their widespread presence in various environmental areas. The unique properties of MPs, such as their small size, durability, and potential to adsorb and transport environmental pollutants, underscore the necessity of studying their characteristics. This study aims to investigate the physical and chemical characteristics of polypropylene microplastics (PPMPs) and address the dispersion stability issues associated with them. The PPMPs were characterised using scanning electron microscopy (SEM), revealing a surface structure marked by cracks, fractures, and a rough texture. The PPMPs were observed as irregularly shaped, white particles. Their size distribution spans from 14 to 96 µm, with a mean size of 50.00 µm. Fourier Transform Infrared Spectroscopy (FTIR) confirmed the presence of polypropylene functional groups, specifically identifying characteristic peaks at 2952-2846 cm-1 and 1456 -1376 cm-1, indicating C-H stretching and bending vibrations, respectively, with additional peaks suggesting degradation. The effect of different concentrations of sodium lauryl sulfate (SLS) on PPMPs dispersion indicated that 5% SLS led to superior dispersion of PPMPs, thereby addressing the stability issue. These findings provide comprehensive insights into the physical and chemical attributes of PPMPs and their dispersion stability, offering a foundation for informed environmental assessments and the development of effective mitigation strategies.

pdf

Keyword: Methylene blue eye, Iron oxide nanoparticles, PVDF, Macrospheres, Optimization, Response surface, methodology

DOI: 10.24191/esteem.v20iSeptember.1860.g1828

References:

[1]          A. A. Bayode, F. O. Agunbiade, M. O. Omorogie, R. Moodley, O. Bodede, and E. I. Unuabonah, “Clean technology for synchronous sequestration of charged organic micro-pollutant onto microwave-assisted hybrid clay materials,” Environmental Science and Pollution Research, vol. 27, no. 9, pp. 9957–9969, 2020. Available: doi: 10.1007/s11356-019-07563-z.

[2]          H. Kolya and C. W. Kang, “Toxicity of Metal Oxides, Dyes, and Dissolved Organic Matter in Water: Implications for the Environment and Human Health,” Multidisciplinary Digital Publishing Institute (MDPI), vol. 12, no. 2, p. 111, 2021. Available:  doi: 10.3390/toxics12020111.

[3]          P. O. Oladoye, T. O. Ajiboye, E. O. Omotola, and O. J. Oyewola, “Methylene blue dye: Toxicity and potential elimination technology from wastewater,” Elsevier B.V., vol. 16, p. 100678, 2021. Available:  doi: 10.1016/j.rineng.2022.100678.

[4]          R. Alrozi, N. A. Zamanhuri, and M. S. Osman, “Removal of methylene blue from aqueous solution by adsorption onto NaOH-treated rambutan peel,” in BEIAC 2012 - 2012 IEEE Business, Engineering and Industrial Applications Colloquium,  pp. 92–97, 2012. Available:  doi: 10.1109/BEIAC.2012.6226113.

[5]          N. Amri, R. Alrozi, M. S. Osman, N. Nasuha, and N. S. Aman, “Removal of methylene blue dye from aqueous solution using pink guava (Psidium Guajava) waste-based activated carbon,” in SHUSER 2012 - 2012 IEEE Symposium on Humanities, Science and Engineering Research,  pp. 33–38, 2012. Available:  doi: 10.1109/SHUSER.2012.6268867.

[6]          J. Lin et al., “Environmental impacts and remediation of dye-containing wastewater,” Nat Rev Earth Environ, vol. 4, no. 11, pp. 785–803, 2023. Available:  doi: 10.1038/s43017-023-00489-8.

[7]          M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, “Adsorption of methylene blue on low-cost adsorbents: A review,” J Hazard Mater, vol. 177, no. 1–3, pp. 70–80, 2010. Available:  doi: 10.1016/j.jhazmat.2009.12.047.

[8]          S. Mohammadpour, P. N. Moghadam, and P. Gharbani, “Preparation, characterization, and photocatalytic performance of a PVDF/cellulose membrane modified with nano Fe3O4 for removal of methylene blue using RSM under visible light,” RSC Adv, vol. 14, no. 13, pp. 8801–8809, 2024. Available:  doi: 10.1039/d3ra08599f.

[9]          N. Isa, M. S. Osman, H. Abdul Hamid, V. Inderan, and Z. Lockman, “Studies of surface plasmon resonance of silver nanoparticles reduced by aqueous extract of shortleaf spikesedge and their catalytic activity,” Int J Phytoremediation, vol. 25, no. 5, pp. 658–669, 2023. Available:  doi: 10.1080/15226514.2022.2099345.

[10]        S. Song et al., “Ultrasmall Graphene Oxide Modified with Fe3O4 Nanoparticles as a Fenton-Like Agent for Methylene Blue Degradation,” ACS Appl Nano Mater, vol. 2, no. 11, pp. 7074–7084, 2019. Available:  doi: 10.1021/acsanm.9b01608.

[11]        Y. J. Zhang, J. J. Chen, G. X. Huang, W. W. Li, H. Q. Yu, and M. Elimelech, “Distinguishing homogeneous advanced oxidation processes in bulk water from heterogeneous surface reactions in organic oxidation,” Proc Natl Acad Sci U S A, vol. 120, no. 20, 2023. Available:  doi: 10.1073/pnas.2302407120.

[12]        N. A. Zubir, C. Yacou, X. Zhang, and J. C. Diniz Da Costa, “Optimisation of graphene oxide-iron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid Orange 7,” J Environ Chem Eng, vol. 2, no. 3, pp. 1881–1888, 2014. Available:  doi: 10.1016/j.jece.2014.08.001.

[13]        M. G. Tavares et al., “Reusable iron magnetic catalyst for organic pollutant removal by Adsorption, Fenton and Photo Fenton process,” J Photochem Photobiol A Chem, vol. 432, Nov. 2022. Available:  doi: 10.1016/j.jphotochem.2022.114089.

[14]        S. P. Yeap, J. K. Lim, B. S. Ooi, and A. L. Ahmad, “Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications,” Journal of Nanoparticle Research, vol. 19, no. 11, 2017. Available:  doi: 10.1007/s11051-017-4065-6.

[15]        S. P. Yeap, A. L. Ahmad, B. S. Ooi, and J. Lim, “Electrosteric stabilization and its role in cooperative magnetophoresis of colloidal magnetic nanoparticles,” Langmuir, vol. 28, no. 42, pp. 14878–14891, 2012. Available:  doi: 10.1021/la303169g.

[16]        J. Lim, S. P. Yeap, and S. C. Low, “Challenges associated to magnetic separation of nanomaterials at low field gradient,” Sep Purif Technol, vol. 123, pp. 171–174, 2014. Available:  doi: 10.1016/j.seppur.2013.12.038.

[17]        L. P. Kong et al., “Design and synthesis of magnetic nanoparticles augmented microcapsule with catalytic and magnetic bifunctionalities for dye removal,” Chemical Engineering Journal, vol. 197, pp. 350–358, 2012. Available: doi: 10.1016/j.cej.2012.05.019.

[18]        M. S. Osman, L. P. Kong, N. A. Zamanhuri, and J. K. Lim, “Role of Temperature and pH on the Dye Degradation Using Magnetic Nanoparticles Augmented Polymeric Microcapsule,” Adv Mat Res, vol. 1113, pp. 566–570, 2015. Available:  doi: 10.4028/www.scientific.net/amr.1113.566.

[19]        M. S. Osman et al., “Artificial Neural Network-driven Optimization of Fe3O4 Nanoparticles/PVDF Macrospheres in Fenton-like System for Methylene Blue Degradation,” Journal of Advanced Research in Micro and Nano Engineering, vol. 22, no. 1, pp. 68–84, 2024. Available:  https://doi.org/10.37934/armne.22.1.6884.

[20]        S. Y. Wai, S. P. Yeap, and Z. A. Jawad, “Synthesis of magnetite macro-bead for water remediation: Process optimization via manipulation of bead size and surface morphology,” in IOP Conference Series: Earth and Environmental Science, 2020. Available:  doi: 10.1088/1755-1315/463/1/012177.

[21]        A. Shokri and M. S. Fard, “A critical review in Fenton-like approach for the removal of pollutants in the aqueous environment,” Elsevier B.V., vol. 7, p. 100534, 2022. Available: doi: 10.1016/j.envc.2022.100534.

[22]        I. Afzal et al., “Logical Optimization of Metal-Organic Frameworks for Photocatalytic Degradation of Organic Pollutants in Water via Box-Behnken Design,” ACS ES and T Water, vol. 2, no. 2, pp.  648–660, 2023. Available:  doi: 10.1021/acsestwater.3c00667.

[23]        H. M. Nassef, G. A. A. M. Al-Hazmi, A. A. A. Alayyafi, M. G. El-Desouky, and A. A. El-Bindary, “Synthesis and characterization of new composite sponge combining of metal-organic framework and chitosan for the elimination of Pb(II), Cu(II) and Cd(II) ions from aqueous solutions: Batch adsorption and optimization using Box-Behnken design,” J Mol Liq, vol. 394, 2024. Available:  doi: 10.1016/j.molliq.2023.123741.

[24]        K. G. N. Quiton, Y. H. Huang, and M. C. Lu, “Photocatalytic oxidation of Reactive Red 195 by bimetallic Fe–Co catalyst: Statistical modeling and optimization via Box-Behnken design,” Chemosphere, vol. 338, 2023. Available:  doi: 10.1016/j.chemosphere.2023.139509.

[25]        M. A. M. Ariff, S. Tukiman, N. A. A. Razak, M. S. Osman, and J. Jaapar, “Optimization of supercritical fluid extraction of Mariposa Christia Vespertilionis leaves towards antioxidant using response surface methodology,” in Journal of Physics: Conference Series, 2019. Available:  doi: 10.1088/1742-6596/1349/1/012054.

[26]        M. Alishiri, S. A. Abdollahi, A. N. Neysari, S. F. Ranjbar, N. Abdoli, and M. Afsharjahanshahi, “Removal of ciprofloxacin and cephalexin antibiotics in water environment by magnetic graphene oxide nanocomposites; optimization using response surface methodology,” Results in Engineering, vol. 20, 2023. Available:  doi: 10.1016/j.rineng.2023.101507.

[27]        K. Khairudin, N. F. Abu Bakar, and M. S. Osman, “Magnetically recyclable flake-like BiOI-Fe3O4 microswimmers for fast and efficient degradation of microplastics,” J Environ Chem Eng, vol. 10, no. 5, p. 108275, 2022. Available:  doi: https://doi.org/10.1016/j.jece.2022.108275.

[28]        R. R. Kalantary, M. Farzadkia, M. Kermani, and M. Rahmatinia, “Heterogeneous electro-Fenton process by Nano-Fe3O4 for catalytic degradation of amoxicillin: Process optimization using response surface methodology,” J Environ Chem Eng, vol. 6, no. 4, pp. 4644–4652, 2018. Available:  doi: 10.1016/j.jece.2018.06.043.

[29]        N. Kanmaz and M. Bu?dayc?, “Promoting photo-fenton catalytic performance of novel NiZrO3-type perovskite: Optimization with response surface methodology,” J Mol Struct, vol. 1295, 2024. Available:  doi: 10.1016/j.molstruc.2023.136718.

[30]        F. Jackulin, P. Senthil Kumar, and G. Rangasamy, “Degradation of tartrazine dye using advanced oxidation process: Application of response surface methodology for optimization,” Desalination Water Treat, vol. 317, p. 100066, 2024. Available:  doi: 10.1016/j.dwt.2024.100066.

[31]        Y. Liu, Y. Zhao, and J. Wang, “Fenton/Fenton-like processes with in-situ production of hydrogen peroxide/hydroxyl radical for degradation of emerging contaminants: Advances and prospects,” Elsevier B.V., vol. 404, p.  124191, 2021. Available:  doi: 10.1016/j.jhazmat.2020.124191.

[32]        N. Wang, T. Zheng, G. Zhang, and P. Wang, “A review on Fenton-like processes for organic wastewater treatment,” Elsevier Ltd., vol. 4, no. 1, pp.  762-787, 2016. Available:  doi: 10.1016/j.jece.2015.12.016.

[33]        D. Meyerstein, “Re-examining Fenton and Fenton-like reactions,” Nature Research, vol. 5, pp. 595–597, 2021. Available: doi: 10.1038/s41570-021-00310-4.

[34]        Y. Jiang et al., “Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments,” Academic Press, vol. 236, p. 113464, 2022. Available: doi: 10.1016/j.ecoenv.2022.113464.

[35]        Q. Zhang, X. Yang, and J. Guan, “Applications of Magnetic Nanomaterials in Heterogeneous Catalysis,” ACS Appl Nano Mater, vol.  2, no. 8, pp. 4681–4697, 2019. Available:  doi: 10.1021/acsanm.9b00976.

[36]        J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications,” Elsevier B.V, vol. 332, p. 115755, 2021. Available: doi: 10.1016/j.molliq.2021.115755.

[37]        I. Amalraj Appavoo, J. Hu, Y. Huang, S. F. Y. Li, and S. L. Ong, “Response surface modeling of Carbamazepine (CBZ) removal by Graphene-P25 nanocomposites/UVA process using central composite design,” Water Res, vol. 57, pp. 270–279, 2014. Available:  doi: 10.1016/j.watres.2014.03.007.

[38]        N. Thomas, D. D. Dionysiou, and S. C. Pillai, “Heterogeneous Fenton catalysts: A review of recent advances,” Elsevier B.V., vol. 404, p. 124082, 2021. Available:  doi: 10.1016/j.jhazmat.2020.124082.

[39]        J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry,” Critical Reviews in Environmental Science and Technology, vol. 36, no. 1, pp. 1–84, 2006. Available:  doi: 10.1080/10643380500326564.

[40]        P. R. Gogate and A. B. Pandit, “A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions,” Advances in Environmental Research, vol. 8, no. 3–4, pp. 501–551, 2004. Available:  doi: 10.1016/S1093-0191(03)00032-7.