HOME: Online Issues

Development of fig fruit ripeness classification using convolutional neural network

E-mail Print PDF

sep2024

Siti Juliana Abu Bakar

Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia

Hanis Raihana Musa

Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia

Mohamed Syazwan Osman

EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia

Mohamed Mydin M Abdul Kader

Sports Engineering Research Centre, Centre of Excellence (SERC), Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia

Denis Eka Cahyani

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Malang, Indonesia

Samsul Setumin

Centre for Electrical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Penang, Malaysia

Abstract

This study presents the design and evaluation of a deep convolutional neural network (CNN) model for accurately classifying fig ripeness stages. Traditionally, fruit ripeness classification has been conducted manually, which presents several drawbacks, including heavy reliance on human labor and inconsistencies in determining fruit ripeness. By leveraging advanced deep learning techniques, specifically CNNs, this research aims to automate the fig ripeness classification process. The CNN architecture was developed and trained using MATLAB software, targeting three ripeness categories: ripe, half-ripe, and unripe. The methodology involved pre-processing the fig images and configuring the CNN model with multiple convolutional, batch normalization, and max pooling layers specifically for fig classification tasks. The final CNN model achieved an impressive accuracy rate of 94.44%, significantly surpassing results from previously reported studies. The developed model is a promising tool for automating fig ripeness classification, contributing to advancements in precision agriculture and smart farming technologies.

pdf

Keyword: Convolution neural network, Figs, Fruit ripeness, Fruit classification, Performance evaluation

DOI: 10.24191/esteem.v20iSeptember.1837.g1829

References:

[1]          M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, and A. Albarelli, “Fruit ripeness classification: A survey,” Artif. Intell. Agric., vol. 7, pp. 44–57, 2023. Available: https://doi.org/10.1016/j.aiia.2023.02.004.

[2]          R. Thakur, G. Suryawanshi, H. Patel, and J. Sangoi, “An Innovative Approach For Fruit Ripeness Classification,” in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), pp. 550–554, 2020. Available: doi: 10.1109/ICICCS48265.2020.9121045.

[3]          Nagesh Appe, S. R., Arulselvi, G., & Balaji, G., "Tomato Ripeness Detection and Classification using VGG based CNN Models," International Journal of Intelligent Systems and Applications in Engineering, vol. 11, no. 1, pp. 296–302, 2023.

[4]          B. Xiao, M. Nguyen, and W. Q. Yan, “Fruit ripeness identification using YOLOv8 model,” Multimed. Tools Appl., vol. 83, no. 9, pp. 28039–28056, 2024. Available: doi: 10.1007/s11042-023-16570-9.

[5]          P. Beek, K. Koelemeijer, D. J. Zuilichem, M. P. Reinders, and H. F. T. Meffert, “Encyclopedia of food sciences and nutrition,” Transp. Logist. food, pp. 5835–5851, 2003.

[6]          K. Shamin-Shazwan, R. Shahari, C. N. A. Che Amri, and N. S. M. Tajuddin, “Figs (Ficus Carisa L.): Cultivation Method and Production Based in Malaysia,” Eng. Herit. J., vol. 3, no. 2, pp. 06–08, 2019. Available: doi: 10.26480/gwk.02.2019.06.08.

[7]          Anjali, A. Jena, A. Bamola, et al., “State-of-the-art non-destructive approaches for maturity index determination in fruits and vegetables: principles, applications, and future directions,” Food Production, Processing and Nutrition, BioMed Central Ltd, vol. 6, no. 1.  2024. Available: doi: 10.1186/s43014-023-00205-5.

[8]          M. Rizzo, M. Marcuzzo, A. Zangari, A. Gasparetto, and A. Albarelli, “Fruit ripeness classification: A survey,” Artif. Intell. Agric., vol. 7, pp. 44–57, 2023. Available: doi: 10.1016/j.aiia.2023.02.004.

[9]          K. Y. and others Mansour, Mohamed Ahmed and Dambul, Katrina D and Choo, “A Review of Non-Destructive Ripeness Classification Techniques for Oil Palm Fresh Fruit Bunches,” J. Oil Palm Res., vol. 35, no. 4, pp. 543–554, 2023. Available: https://doi.org/10.21894/jopr.2022.0063

[10]        I. A. Mazni, S. Setumin, A. A. Sunak Joseph, M. Khusairi Osman, M. S. Osman, and M. Subri Tahir, “Development of a Non-Destructive Fruit Quality Predictor Using Convolutional Neural Network Regression Model on Raspberry Pi,” in 2022 2nd International Conference on Emerging Smart Technologies and Applications (eSmarTA), pp. 1–5, 2022. Available: doi: 10.1109/eSmarTA56775.2022.9935374.

[11]        D. Worasawate, P. Sakunasinha, and S. Chiangga, “Automatic Classification of the Ripeness Stage of Mango Fruit Using a Machine Learning Approach,” AgriEngineering, vol. 4, no. 1, pp. 32–47, 2022. Available: doi: 10.3390/agriengineering4010003.

[12]        O. Sudana, D. Witarsyah, A. Putra, and S. Raharja, “Mobile Application for Identification of Coffee Fruit Maturity using Digital Image Processing,” vol. 10, no. 3, pp. 980-986, 2020. Available: doi:10.18517/ijaseit.10.3.11135.

[13]        S. S. S. Palakodati, V. R. R. Chirra, Y. Dasari, and S. Bulla, “Fresh and rotten fruits classification using CNN and transfer learning,” Rev. d’Intelligence Artif., vol. 34, no. 5, pp. 617–622, 2020. Available: doi: 10.18280/ria.340512.

[14]        W. H. Cho, S. K. Kim, M. H. Na, and I. S. Na, “Fruit Ripeness Prediction Based on DNN Feature Induction from Sparse Dataset,” Comput. Mater. Contin., vol. 69, no. 3, pp. 4003–4024, 2021. Available: doi: 10.32604/cmc.2021.018758.

[15]        W. Castro, J. Oblitas, M. De-La-Torre, C. Cotrina, K. Bazán, and H. Avila-George, “Classification of Cape Gooseberry Fruit According to its Level of Ripeness Using Machine Learning Techniques and Different Color Spaces,” IEEE Access, vol. 7, pp. 27389–27400, 2019. Available: doi: 10.1109/ACCESS.2019.2898223.

[16]        R. Hamza and M. Chtourou, “Design of fuzzy inference system for apple ripeness estimation using gradient method,” IET Image Process., vol. 14, no. 3, pp. 561–569, 2020. Available: doi: https://doi.org/10.1049/iet-ipr.2018.6524.

[17]        H. H. Wang and S. Y. Chai, “Novel Feature Extraction for Pineapple Ripeness Classification,” J. Telecommun. Inf. Technol., vol. 2022, no. 1, pp. 14–22, 2022. Available: doi: 10.26636/jtit.2022.156021.

[18]        Lia Kamelia, Mufid Ridlo Effendi, and Nisa Hafidzatul Adila, “Ripeness Level Classification of Banana Fruit Based on Hue Saturate Value (HSV) Color Space Using K-Nearest Neighbor Algorithm,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 2, pp. 941–947, 2021. Available: doi: 10.30534/ijatcse/2021/651022021.

[19]        C. B. MacEachern, T. J. Esau, A. W. Schumann, P. J. Hennessy, and Q. U. Zaman, “Detection of fruit maturity stage and yield estimation in wild blueberry using deep learning convolutional neural networks,” Smart Agric. Technol., vol. 3, p. 100099, 2023. Available: doi: https://doi.org/10.1016/j.atech.2022.100099.

[20]        M. T. Vasumathi and M. Kamarasan, “An Effective Pomegranate Fruit Classification Based On CNN-LSTM Deep Learning Models,” Indian J. Sci. Technol., vol. 14, no. 16, pp. 1310–1319, 2021. Available: doi: 10.17485/IJST/v14i16.432.

[21]        A. C. Sari, H. Setiawan, T. W. Adiputra, and J. Widyananda, “Fruit classification quality using convolutional neural network and augmented reality,” J. Theor. Appl. Inf. Technol., vol. 99, no. 22, pp. 5300–5311, 2021.

[22]        C. G. Pachón-Suescún, J. O. Pinzón-Arenas, and R. Jiménez-Moreno, “Fruit Identification and Quality Detection by Means of DAG-CNN,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 10, no. 5, pp. 2183–2188, 2020. Available: doi: 10.18517/ijaseit.10.5.8684.

[23]        J. Pardede, B. Sitohang, S. Akbar, and M. L. Khodra, “Implementation of Transfer Learning Using VGG16 on Fruit Ripeness Detection,” Int. J. Intell. Syst. Appl., vol. 13, pp. 52–61, 2021. Available: doi: 10.5815/ijisa.2021.02.04.

[24]        Y. A. S. A. F. A. Harmandeep Singh Gill Osamah Ibrahim Khalaf, “Multi-Model CNN-RNN-LSTM Based Fruit Recognition and Classification,” Intell. Autom. \& Soft Comput., vol. 33, no. 1, pp. 637–650, 2022. Available: doi: 10.32604/iasc.2022.022589.

[25]        Y.-P. Huang, T.-H. Wang, and H. Basanta, “Using Fuzzy Mask R-CNN Model to Automatically Identify Tomato Ripeness,” IEEE Access, vol. 8, pp. 207672–207682, 2020. Available: doi: 10.1109/ACCESS.2020.3038184.

[26]        M. Ikmal, F. Maruzuki, A. Sakina Shahrin, et al., “A Multilayer Perceptron Approach for Ficus carica (fig) Ripening Classification,” ESTEEM Acad. J., vol. 17, pp. 56–66, 2021.

[27]        C. Szegedy, V. Vanhoucke, S. Ioffe, and J. Shlens, “Rethinking the Inception Architecture for Computer Vision,” 2015. Available: https://doi.org/10.48550/arXiv.1512.00567

[28]        F. N. Iandola, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size,” arXiv Prepr. arXiv1602.07360, pp. 1-17, 2016.

[29]        K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv Prepr. arXiv1409.1556, pp. 1–14, 2014. Available: doi: 10.48550/arXiv.1409.1556