HOME: Online Issues

Optimization of Acid Orange II Degradation using Fe3-xMnxO4-MKSF Catalyst in Heterogeneous Fenton-like Reaction via Response Surface Methodology

E-mail Print PDF

sep2024

Amirah Annasuha Azmi

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Rasyidah Alrozi

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Hybrid Nanomaterials, Interfaces & Simulation (HYMFAST), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Pulau Pinang, Malaysia

Nor Aida Zubir

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Hybrid Nanomaterials, Interfaces & Simulation (HYMFAST), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Pulau Pinang, Malaysia

Mohamad Anuar Kamaruddin

Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Pulau Pinang, Malaysia

Abstract

In this study, the operational conditions for acid orange II (AOII) degradation in a heterogeneous Fenton-like reaction using a claysupported Fe3-xMnxO4 (Fe3-xMnxO4-MKSF) catalyst were optimized using response surface methodology (RSM). A standard RSM called a central composite design (CCD) experiment was used to determine the effects of four operational variables: pH solution, catalyst dosage, concentration of H2O2 and initial concentration of AOII on the percentage of AOII removal. Based on the analysis of variance (ANOVA), the model exhibited a correlation coefficient (R2 ) of 0.9672 which demonstrated approximately 96% of target function variation. The optimal operational conditions were obtained at 2.5 pH solution, 0.4 g/L catalyst dosage, 15 mM H2O2 concentration and 35 mg/L AOII initial concentration which resulted in 86.72% of AOII degradation. The experimental results showed good agreement with the values predicted by the model at optimal conditions, exhibiting relative differences of less than 5%. These findings provide valuable insights into the interaction of four key variables affecting AOII degradation during the heterogeneous Fenton-like reaction using Fe3-xMnxO4-MKSF catalyst.

pdf

Keyword: Optimization, Acid orange II dye, Fenton-like reaction, Fe3-xMnxO4-MKSF, Heterogeneous catalyst, Response surface methodology

DOI: 10.24191/esteem.v21iMarch.4755.g 3039

References:

[1] J. Zhou and H. Meifang, “Degradation of Orange II by the Fe0/H2O2 system,” IOP Conf. Ser. Earth Environ. Sci., vol. 526, pp. 1–9, 2020, doi: 10.1088/1755-1315/526/1/012062.

[2] M. A. Kamaruddin, M. S. Yusoff, H. A. Aziz, and R. Alrozi, “Preparation and characterization of activated carbon embedded clinoptilolite adsorbent for colour removal from textile effluent,” J. Mater. Chem. Eng, vol. 2, pp. 1–10, 2014, doi: 10.12983/ijsrin-2013-p037-047

[3] R. Alrozi, N. A. Zamanhuri, and M. S. Osman, “Adsorption of reactive dye Remazol Brilliant Blue R from aqueous solutions by rambutan peel,” 2012, doi: 10.1109/SHUSER.2012.6268855.

[4] D. Goswami, J. Mukherjee, C. Mondal, and B. Bhunia, “Bioremediation of azo dye?: A review on strategies, toxicity assessment, mechanisms, bottlenecks and prospects,” Sci. Total Environ., vol. 954, p. 176426, 2024, doi: 10.1016/j.scitotenv.2024.176426.

[5] A. Iqbal, A. Yusaf, M. Usman, T. Hussain Bokhari, and A. Mansha, “Insight into the degradation of different classes of dyes by advanced oxidation processes; a detailed review,” Int. J. Environ. Anal. Chem., vol. 104, no. 17, pp. 5503–5537, 2024, doi: 10.1080/03067319.2022.2125312

[6] D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes, and U. Hübner, “Evaluation of advanced oxidation processes for water and wastewater treatment–A critical review,” Water Res., vol. 139, pp. 118–131, 2018, doi: 10.1016/j.watres.2018.03.042

[7] Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, and H. He, “Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review,” Appl. Catal. B Environ., vol. 255, p. 117739, 2019, doi: 10.1016/j.apcatb.2019.05.041

[8] A. Lassoued, L. J. Liu, and J. F. Li, “Removal of acid orange II azo dyes using Fe-based metallic glass catalysts by Fenton-like process,” J. Mater. Sci., vol. 57, no. 3, pp. 2039–2052, 2022, doi: 10.1007/s10853-021-06669-5.

[9] M. Moazeni, S. M. Hashemian, M. Sillanpää, A. Ebrahimi, and K. H. Kim, “A heterogeneous peroxymonosulfate catalyst built by Fe-based metal-organic framework for the dye degradation,” J. Environ. Manage., vol. 303, p. 113897, 2022, doi: 10.1016/j.jenvman.2021.113897.

[10] Z. Liu, Y. Zhang, J. Lee, and L. Xing, “A review of application mechanism and research progress of Fe/montmorillonite-based catalysts in heterogeneous Fenton reactions,” J. Environ. Chem. Eng., vol. 12, no. 2, p. 112152, 2024, doi: 10.1016/j.jece.2024.112152.

[11] J. Tang and J. Wang, “Fe-based metal organic framework/graphene oxide composite as an efficient catalyst for Fenton-like degradation of methyl orange,” RSC Adv., vol. 7, no. 80, pp. 50829–50837, 2017, doi: 10.1039/c7ra10145g.

[12] H. Yan et al., “Magnetic nanoscale MnFe2O4 as heterogeneous Fenton?like catalyst for rhodamine B degradation: efficiency, kinetics and process optimization,” J. Iran. Chem. Soc., vol. 20, no. 8, pp. 2043–2055, 2023, doi: 10.1007/s13738-023-02823-9.

[13] M. A. Ahmad and R. Alrozi, “Optimization of rambutan peel based activated carbon preparation conditions for Remazol Brilliant Blue R removal,” Chem. Eng. J., vol. 168, no. 1, 2011, doi: 10.1016/j.cej.2011.01.005.

[14] N. Hidayati Abdullah, N. Aida Zubir, R. Alrozi, N. Nasuha, and H. Hassan, “Optimization of oxidative MO’s degradation in heterogeneous Fenton-like reaction using Fe-MKSF,” Mater. Today Proc., vol. 5, no. 10, pp. 21956–21963, 2018, doi: 10.1016/j.matpr.2018.07.056.

[15] N. A. Zubir, C. Yacou, X. Zhang, and J. C. Diniz da Costa, “Optimisation of graphene oxide – iron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid Orange 7,” J. Environ. Chem. Eng., vol. 2, no. 3, pp. 1881–1888, 2014, doi: 10.1016/j.jece.2014.08.001.

[16] M. Z. Ibrahim, R. Alrozi, N. A. Zubir, N. A. Bashah, S. A. M. Ali, and N. Ibrahim, “Optimization of Acid Orange 7 Degradation in Heterogeneous Fenton-like Reaction Using Fe3-xCoxO4 Catalyst,” IOP Conf. Ser. Mater. Sci. Eng., vol. 358, pp. 1–6, 2018, doi: 10.1088/1757-899X/358/1/012020.

17] R. Alrozi, N. A. Zubir, N. Amir, N. N. A. Abdul Rahman, and M. A. Kamaruddin, “Heterogeneous fenton-like reaction using Fe3-xMnxO4-MKSF composite catalyst for degradation of acid orange II dye,” in Journal of Physics: Conference Series, 2019, vol. 1349, no. 1, doi: 10.1088/1742-6596/1349/1/012142.

[18] N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, and J. C. Diniz Da Costa, “Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction,” Sci. Rep., vol. 4, pp. 1–8, 2014, doi: 10.1038/srep04594.

[19] J. Meijide, E. Rosales, M. Pazos, and M. A. Sanromán, “p-Nitrophenol degradation by electro-Fenton process: pathway, kinetic model and optimization using central composite design,” Chemosphere, vol. 185, pp. 726–736, 2017, doi: 10.1016/j.chemosphere.2017.07.067

[20] S. Kalal, A. Pandey, R. Ameta, and P. B. Punjabi, “Heterogeneous photo-Fenton-like catalysts Cu2V2O7 and Cr2V4O13 for an efficient removal of azo dye in water,” Cogent Chem., vol. 2, no. 1, pp. 1–12, 2016, doi: 10.1080/23312009.2016.1143344.

[21] M. Blanco, A. Martinez, A. Marcaide, E. Aranzabe, and A. Aranzabe, “Heterogeneous Fenton catalyst for the efficient removal of azo dyes in water,” Am. J. Anal. Chem., vol. 5, p. 490, 2014, doi: 10.4236/ajac.2014.58058

[22] H. Chen, Y. Xu, K. Zhu, and H. Zhang, “Understanding oxygen-deficient La2CuO4-? perovskite activated peroxymonosulfate for bisphenol A degradation: The role of localized electron within oxygen vacancy,” Appl. Catal. B Environ., vol. 284, no. November 2020, p. 119732, 2021, doi: 10.1016/j.apcatb.2020.119732.

[23] Y. Rao, F. Han, Q. Chen, D. Wang, D. Xue, and H. Wang, “Efficient degradation of diclofenac by LaFeO3 -Catalyzed peroxymonosulfate oxidation-kinetics and toxicity assessment,” Chemosphere, vol. 218, pp. 299–307, 2019, doi: 10.1016/j.chemosphere.2018.11.105.

[24] M. Fayazi, M. Ali, D. Afzali, and A. Mostafavi, “Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon / hydrogen peroxide with hydroxylamine as Fenton enhancer,” J. Mol. Liq., vol. 216, pp. 781–787, 2016, doi: 10.1016/j.molliq.2016.01.093.

[25] J. H. Ramirez et al., “Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay,” Appl. Catal. B Environ., vol. 71, no. 1–2, pp. 44–56, 2007, doi: 10.1016/j.apcatb.2006.08.012.

[26] S. Tiwari, W. H. Ryu, K. J. Kim, and E. S. Park, “Development of (Fe-Co-Ni)-Si-B metallic glass catalyst for promoting degradation of acid orange II azo-dye,” J. Alloys Compd., vol. 961, p. 171027, 2023, doi: 10.1016/j.jallcom.2023.171027.

[27] L. Ji, R. Yu, W. Qiu, and J. Liu, “Excellent Catalytic Performance of FeSiBPY Amorphous Alloy Ribbons in the Degradation of Different Structure Dyes,” Catal. Letters, vol. 155, no. 3, pp. 1–18, 2025, doi: 10.1007/s10562-025-04954-5.

[28] R. Alrozi et al., “Functional role of B-site substitution on the reactivity of CaMFeO3 (M = Cu, Mo, Co) perovskite catalysts in heterogeneous Fenton-like degradation of organic pollutant,” J. Taiwan Inst. Chem. Eng., vol. 143, p. 104675, 2023, doi: 10.1016/j.jtice.2023.104675.