HOME: Online Issues

The role of xerogel in immobilising carbon quantum dots derived from oil palm mesocarp fibre: A potential adsorbent for CO2 capture

E-mail Print PDF

mac2025

Aimi Solihah Zaul Kapri

Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Norhusna Mohamad Nor

Centre for Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

 

Abstract

Carbon quantum dots (CQDs) often suffer from agglomeration and structural instability, significantly reducing their adsorption efficiency and reusability. This study investigates the role of xerogel in stabilising and immobilising CQDs derived from oil palm mesocarp fibre (MF) as a potential CO2 adsorbent. The extracted MF cellulose was synthesised into CQDs via hydrothermal treatment and subsequently immobilised within a xerogel matrix (X-MF-CQDs). The CO2 adsorption performance was evaluated through breakthrough and sorption capacity experiments, where X-MF-CQDs at a 1:50 dilution exhibited the highest sorption capacity (129.04 mg/g) and a moderate breakthrough time (61.3 s). BET analysis confirmed a low surface area (0.7011 m²/g), while pore size distribution revealed dominant micro porosity (~20 Å), crucial for CO2 capture. FTIR analysis indicated the presence of N–H, C=N, C-O, and C-S bonds, confirming successful heteroatom doping. CHNS analysis revealed a composition of 50.33 % C, 22.78 % O, and 0.6 % S, highlighting the contribution of heteroatoms in CO2 affinity. HRTEM and FESEM analyses confirmed uniform CQDs dispersion within the xerogel matrix, effectively minimising agglomeration and enhancing adsorption. These findings demonstrate the effectiveness of xerogel-immobilised CQDs (X-MF-CQDs) as a stable and efficient CO2 adsorbent, promoting sustainable waste valorisation strategies.

pdf

Keyword: Xerogel, Oil palm waste, Mesocarp fibre, CO2 removal, Carbon quantum dots (CQDs), Adsorption

DOI: 10.24191/esteem.v21iMarch.4713.g3055

References:

[1] L. Cui, X. Ren, M. Sun, H. Liu, and L. Xia, “Carbon dots: Synthesis, properties and applications,” Nanomaterials, vol. 11, no. 12, Dec. 2021. Available: https://doi.org/10.3390/nano11123419

[2] T. C. Wareing, P. Gentile, and A. N. Phan, “Biomass-Based Carbon Dots: Current Development and Future Perspectives,” ACS Nano, vol. 15, no. 10, pp. 15471–15501, 2021. Available: https://doi.org/10.1021/acsnano.1c03886

[3] S. Dinç, M. Kara, A. Ve, D. Dergisi, and S. Dinc, “Synthesis and Applications of Carbon Dots from Food and Natural Products: A Mini-Review,” 2018. [Online]. Available: www.dergipark.gov.tr/jan

[4] S. Li et al., “The development of carbon dots: From the perspective of materials chemistry,” Materials Today, vol. 51, no. December, pp. 188–207, 2021. Available: https://doi.org/10.1016/j.mattod.2021.07.028

[5] S. Sagbas and N. Sahiner, “Carbon dots: Preparation, properties, and application,” in Nanocarbon and its Composites: Preparation, Properties and Applications, Elsevier, 2018, pp. 651–676. Available: https://doi.org/10.1016/B978-0-08-102509-3.00022-5

[6] S. Das, L. Ngashangva, and P. Goswami, “Carbon dots: An emerging smart material for analytical applications,” Micromachines (Basel), vol. 12, no. 1, pp. 1–36, Jan. 2021. Available: https://doi.org/10.3390/MI12010084

[7] S. Das, L. Ngashangva, and P. Goswami, “Carbon dots: An emerging smart material for analytical applications,” Micromachines (Basel), vol. 12, no. 1, pp. 1–36, Jan. 2021, doi: 10.3390/MI12010084.

[8] S. E. Elugoke, G. E. Uwaya, T. W. Quadri, and E. E. Ebenso, “Carbon Quantum Dots: Basics, Properties, and Fundamentals,” in ACS Symposium Series, vol. 1465, American Chemical Society, 2024, pp. 3–42. Available: https://doi.org/10.1021/bk-2024-1465.ch001

[9] P. K. Yadav, S. Chandra, V. Kumar, D. Kumar, and S. H. Hasan, “Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis,” Catalysts, vol. 13, no. 2, Feb. 2023. Available: https://doi.org/10.3390/catal13020422

[10] N. A. Mahat and S. A. Shamsudin, “Blue luminescence carbon quantum dots derived from oil palm empty fruit bunch biomass,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Mar. 2020. Available: https://doi.org/10.1088/1757-899X/736/5/052001, doi: 10.1088/1757-899X/736/5/052001

[11] Y. N. Monday, J. Abdullah, N. A. Yusof, S. A. Rashid, and R. H. Shueb, “Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor,” Applied Sciences, vol. 11, no. 4, Feb. 2021. Available: https://doi.org/10.3390/app11041630, doi: 10.3390/app11041630

[12] E. Onoja, S. Chandren, F. I. Abdul Razak, N. A. Mahat, and R. A. Wahab, "Oil Palm (Elaeis guineensis) Biomass in Malaysia: The Present and Future Prospects," Springer Netherlands, Aug. 1, 2019. Available: https://doi.org/10.1007/s12649-018-0258-1

[13] R. K. Liew et al., "Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications," Process Safety and Environmental Protection, vol. 115, pp. 57–69, Apr. 2018. Available: https://doi.org/10.1016/j.psep.2017.10.005

[14] S. S. Shamsul Azlan, N. R. Abd Rahman, and M. Mohamad, "Carbon Emission in Malaysia: Trends and Initiatives of Government," International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 13, no. 1, Feb. 2023. Available: https://doi.org/10.6007/ijarafms/v13-i1/15879

[15] J. Xu, K. G. Haw, Z. Li, S. Pati, Z. Wang, and S. Kawi, "A mini-review on recent developments in SAPO-34 zeolite membranes and membrane reactors," React Chem Eng, vol. 6, no. 1, pp. 52–66, Jan. 2021. Available: https://doi.org/10.1039/D0RE00349B

[16] X. Y. D. Soo et al., “Advancements in CO2 capture by absorption and adsorption: A comprehensive review,” Journal of CO2 Utilization, vol. 70, p. 102727, Mar. 2024. Available: https://doi.org/10.1016/j.jcou.2024.102727

[17] Y. Zhou, P. Tan, Z. He, C. Zhang, Q. Fang, and G. Chen, “CO2 adsorption performance of nitrogen-doped porous carbon derived from licorice residue by hydrothermal treatment,” Fuel, vol. 311, p. 122507, 2022. Available: https://doi.org/10.1016/j.fuel.2021.122507

[18] A. Zaker, S. ben Hammouda, J. Sun, X. Wang, X. Li, and Z. Chen, “Carbon-based materials for CO? capture: Their production, modification and performance,” J. Environ. Chem. Eng., vol. 11, no. 5, Jun. 2023. Available: https://doi.org/10.1016/j.jece.2023.109741

[19] Q. Li, S. Liu, L. Wang, F. Chen, J. Shao, and X. Hu, “Efficient nitrogen doped porous carbonaceous CO? adsorbents based on lotus leaf,” J. Environ. Sci. (China), vol. 103, pp. 268–278, May 2021. Available: https://doi.org/10.1016/j.jes.2020.11.008

[20] C. Ma, T. Lu, J. Shao, J. Huang, X. Hu, and L. Wang, “Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO? adsorption,” Sep. Purif. Technol., vol. 281, Jan. 2022. Available: https://doi.org/10.1016/j.seppur.2021.119899

[21] J. Shi, H. Cui, J. Xu, N. Yan, C. Zhang, and S. You, “Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO? adsorption,” Fuel, vol. 305, Dec. 2021. Available: https://doi.org/10.1016/j.fuel.2021.121505

[22] A. K. Nayak and B. Das, “Introduction to polymeric gels,” in Polymeric Gels, Elsevier, 2018, pp. 3–27. Available: https://doi.org/10.1016/b978-0-08-102179-8.00001-6

[23] S. Yamasaki et al., “Nanocellulose xerogels with high porosities and large specific surface areas,” Front. Chem., vol. 7, no. MAY, 2019. Available: https://doi.org/10.3389/fchem.2019.00316

[24] N. F. Sayakulu and S. Soloi, “The effect of sodium hydroxide (NaOH) concentration on oil palm empty fruit bunch (OPEFB) cellulose yield,” in J. Phys.: Conf. Ser., Institute of Physics, 2022. Available: https://doi.org/10.1088/1742-6596/2314/1/012017

[25] H. Zhou, Y. Ren, Z. Li, W. He, and Z. Li, “Selective detection of Fe³? by nitrogen–sulfur-doped carbon dots using thiourea and citric acid,” Coatings, vol. 12, no. 8, 2022. Available: https://doi.org/10.3390/coatings12081042

[26] A. B. Alias, D. Qarizada, N. S. A. Malik, N. M. R. Noraini, and Z. A. Rashid, “Comparison of hydrogel-and xerogel-based sorbent from empty fruit bunch (EFB),” Arch. Mater. Sci. Eng., vol. 118, no. 2, pp. 49–60, Dec. 2022. Available: https://doi.org/10.5604/01.3001.0016.2579

[27] N. M. R. Noraini, A. B. Alias, D. Qarizada, F. A. M. Azman, Z. A. Rashid, and M. R. C. Hasan, “Synthesis and characterization of xerogel from palm kernel shell biochar,” J. Mech. Eng., vol. 11, no. Special Issue 1, pp. 211–226, 2022. Available: https://doi.org/10.24191/jmeche.v11i1.23599

[28] S. Acevedo, L. Giraldo, and J. C. Moreno-Piraján, “Adsorption of CO? on activated carbons prepared by chemical activation with cupric nitrate,” ACS Omega, vol. 5, no. 18, pp. 10423–10432, May 2020. Available: https://doi.org/10.1021/acsomega.0c00342

[29] S. Mahajan and M. Lahtinen, “Recent progress in metal-organic frameworks (MOFs) for CO? capture at different pressures,” J. Environ. Chem. Eng., vol. 10, no. 6, p. 108930, Dec. 2022. Available: https://doi.org/10.1016/j.jece.2022.108930

[30] B. Dziejarski, J. Serafin, K. Andersson, and R. Krzy?y?ska, “CO? capture materials: A review of current trends and future challenges,” Mater. Today Sustain., vol. 24, p. 100483, Dec. 2023. Available: https://doi.org/10.1016/j.mtsust.2023.100483

[31] M. A. Mousa, H. H. Abdelrahman, M. A. Fahmy, D. G. Ebrahim, and A. H. E. Moustafa, “Pure and doped carbon quantum dots as fluorescent probes for the detection of phenol compounds and antibiotics in aquariums,” Sci. Rep., vol. 13, no. 1, Dec. 2023. Available: https://doi.org/10.1038/s41598-023-39490-y

[32] I. A. Principe and A. J. Fletcher, “Adsorption selectivity of CO? over CH?, N? and H? in melamine–resorcinol–formaldehyde xerogels,” Adsorption, vol. 26, no. 5, pp. 723–735, Jul. 2020. Available: https://doi.org/10.1007/s10450-020-00203-w

[33] D. H. Jeon, B. G. Min, J. G. Oh, C. Nah, and S. J. Park, “Influence of nitrogen moieties on CO? capture of carbon aerogel,” Carbon Lett., vol. 16, no. 1, pp. 57–61, Jan. 2015. Available: https://doi.org/10.5714/cl.2015.16.1.057

[34] A. Aygun, I. Cobas, R. N. E. Tiri, and F. Sen, “Hydrothermal synthesis of B, S, and N-doped carbon quantum dots for colorimetric sensing of heavy metal ions,” RSC Adv., vol. 14, no. 16, pp. 10814–10825, Apr. 2024. Available: https://doi.org/10.1039/d4ra00397g

[35] Q. Zhu et al., “Highly porous carbon xerogels doped with cuprous chloride for effective CO adsorption,” ACS Omega, vol. 4, no. 4, pp. 6138–6143, Apr. 2019. Available: https://doi.org/10.1021/acsomega.8b03647

[36] A. B. Alias, D. Qarizada, N. S. A. Malik, N. M. R. Noraini, and Z. A. Rashid, “Comparison of hydrogel- and xerogel-based sorbent from empty fruit bunch (EFB),” Arch. Mater. Sci. Eng., vol. 118, no. 2, pp. 49–60, Dec. 2022. Available: https://doi.org/10.5604/01.3001.0016.2579

[37] G. Güzel Kaya, “Polyethylene glycol/silica and carbon black/silica xerogel composites as an adsorbent for CO? capture,” Turk. J. Chem., vol. 45, no. 6, pp. 2013–2023, 2021. Available: https://doi.org/10.3906/kim-2101-45

[38] A. Kechagias et al., “Development and characterization of N/S-carbon quantum dots by valorizing Greek crayfish food waste,” Appl. Sci. (Switz.), vol. 13, no. 15, Aug. 2023. Available: https://doi.org/10.3390/app13158730

[39] H. Cai, L. Fu, H. Pan, Z. Yan, T. Chen, and T. Zhao, “Pore engineering of ultramicroporous carbon from an N-doped polymer for CO? adsorption and conversion,” Mol. Catal., vol. 550, Nov. 2023. Available: https://doi.org/10.1016/j.mcat.2023.113557

[40] W. Shi, J. Yu, H. Liu, D. Gao, A. Yuan, and B. Chang, “Hierarchically nanoporous carbon for CO? capture and separation: Roles of morphology, porosity, and surface chemistry,” ACS Appl. Nano Mater., vol. 6, no. 9, pp. 7887–7900, May 2023. Available: https://doi.org/10.1021/ACSANM.3C01040

[41] Q. He, Y. Xu, and X. Yang, “Facile synthesis of aromatic porous organic polymer for highly selective capture of CO? via enhanced local dipole-? and dipole-quadrupole interactions by adjacent benzene,” Polym. Sci. - Ser. B, vol. 61, no. 5, pp. 629–636, Sep. 2019. Available: https://doi.org/10.1134/S1560090419050063

[42] J. Liu et al., “High-density and super ultra-microporous-activated carbon macrospheres with high volumetric capacity for CO? capture,” Adv. Sustain. Syst., vol. 2, no. 2, Feb. 2018. Available: https://doi.org/10.1002/adsu.201700115

[43] D. H. Jeon, S. T. Bae, and S. J. Park, “Preparation and characterization of chemically activated carbon materials for CO? capture,” Carbon Lett., vol. 17, no. 1, pp. 85–89, Jan. 2016. Available: https://doi.org/10.5714/CL.2016.17.1.085

[44] J. F. Vivo-Vilches et al., “Resorcinol–formaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas,” Adsorption, vol. 24, no. 2, pp. 169–177, Feb. 2018. Available: https://doi.org/10.1007/S10450-018-9933-6