HOME: Online Issues

Influence of iron doping on the morphological and compositional properties of zirconia foil as photocatalyst

E-mail Print PDF

mac2025

Nor Aimi Abdul Wahab

Department of Applied Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Adhwa Izzati Md Taib

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nabilah Yasmin Shamsol Afandi

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Norain Isa

Chemical Engineering Studies, Universiti Teknologi MARA, Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Pulau Pinang, Malaysia

Nurulhuda Bashirom

School of Materials Engineering, Kompleks Pusat Pengajian Jejawi 2, Universiti Malaysia Perlis, Taman Muhibbah, 02600 Jejawi, Arau, Perlis, Malaysia

Mustaffa Ali Azhar Taib

Division of Advanced Ceramic Materials Technology, Advanced Technology Training Center (ADTEC) Taiping, 34600, Kamunting, Perak, Malaysia

Zainovia Lockman

School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

Abstract

Zirconia (ZrO2) is a promising photocatalyst; however, its performance is often limited by poor charge separation and low visible light absorption. To enhance its photocatalytic potential, this study investigates the effects of iron doping on the morphology and composition of zirconia foil. Iron(II) sulfate heptahydrate (FeSO4·7H2O) and iron(III) nitrate nonahydrate (Fe(NO3)3·9H2O) were used at varying concentrations to examine their effects through scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The findings reveal that higher concentrations of both irons induce notable surface restructuring compounds that cause considerable surface changes and color variations, indicating successful doping among the two precursors, Fe(NO3)3·9H2O exhibits superior doping efficiency at lower concentrations. This study provides qualitative insights into these morphological modifications, contributing to a better understanding of iron-doped zirconia's role in photocatalysis.

pdf

Keyword: Compositional, Morphological, Photocatalyst, Zirconia, Iron doping

DOI: 10.24191/esteem.v21iMarch.586.g3074

References:

[1] C. Gautam, J. Joyner, A. Gautam, J. Rao, and R. Vajtai, “Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications,” Dalt. Trans., vol. 45, no. 48, pp. 19194–19215, 2016.

[2] J. Chevalier, L. Gremillard, A. V Virkar, and D. R. Clarke, “The tetragonal-monoclinic transformation in zirconia: lessons learned and future trends,” J. Am. Ceram. Soc., vol. 92, no. 9, pp. 1901–1920, 2009.

[3] W. J. Fleming, “Physical principles governing nonideal behavior of the zirconia oxygen sensor,” J. Electrochem. Soc., vol. 124, no. 1, p. 21, 1977.

[4] E. D. Jones, “Control of semiconductor conductivity by doping,” Electron. Mater. From Silicon to Org., pp. 155–171, 1991.

[5] E.W. Leib, R.M. Pasquarelli, J.J. do Rosário, P.N. Dyachenko, S. Döring, A. Puchert, ... & T. Vossmeyer., “Yttria-stabilized zirconia microspheres: novel building blocks for high-temperature photonics,” J. Mater. Chem. C, vol. 4, no. 1, pp. 62–74, 2016.

[6] J. Deng, Y. Zhou, S. Li, L. Xiong, J. Wang, S. Yuan, & Y. Chen., “Designed synthesis and characterization of nanostructured ceria-zirconia based material with enhanced thermal stability and its application in three-way catalysis,” J. Ind. Eng. Chem., vol. 64, pp. 219–229, 2018, doi: 10.1016/j.jiec.2018.03.018.

[7] A. O. de Souza, F. F. Ivashita, V. Biondo, A. Paesano Jr, and D. H. Mosca, “Structural and magnetic properties of iron doped ZrO2,” J. Alloys Compd., vol. 680, pp. 701–710, 2016.

[8] N. Doufar, M. Benamira, H. Lahmar, M. Trari, I. Avramova, and M. T. Caldes, “Structural and photochemical properties of Fe-doped ZrO2 and their application as photocatalysts with TiO2 for chromate reduction,” J. Photochem. Photobiol. A Chem., vol. 386, p. 112105, 2020, doi: 10.1016/j.jphotochem.2019.112105.

[9] F. J. Jelaini, N. Bashirom, N. H. N. C. Fauzi, and N. Isa, “Anodic oxidation of Zr-5Fe alloy in ethylene glycol/fluoride electrolyte for Cr(VI) removal under sunlight,” Mater. Today Proc., 2023, doi: 10.1016/j.matpr.2023.11.152.

[10] N. Isa, N. Mohamad Nor, W.Z. Wan Kamis, W.K. Tan, G. Kawamura, A. Matsuda, & Z. Lockman., “Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye,” J. Appl. Electrochem., vol. 52, no. 1, pp. 173–188, 2022, doi: 10.1007/s10800-021-01644-z.

[11] L. R. Xuen, N. Isa, K. A. Razak, M. Jaafar, and Z. Lockman, “Silver Nanoparticles/Titanium Dioxide Nanowires Photocatalyst Formation for Microplastic Removal Using Ultraviolet Radiation,” Solid State Phenom., vol. 352, pp. 67–74, 2023, doi: 10.4028/p-aS0wOb.

[12] N. Bashirom, K. A. Razak, and Z. Lockman, “Synthesis of freestanding amorphous ZrO2 nanotubes by anodization and their application in photoreduction of Cr(VI) under visible light,” Surf. Coatings Technol., vol. 320, pp. 371–376, 2017, doi: 10.1016/j.surfcoat.2016.12.026.

[13] N. Isa, S. H. Sarijo, A. Aziz, and Z. Lockman, “Synthesis colloidal Kyllinga brevifolia -mediated silver nanoparticles at different temperature for methylene blue removal,” AIP Conf. Proc., vol. 1877, 2017, doi: 10.1063/1.4999887.

[14] C. Gautam, A. Gautam, V. K. Mishra, N. Ahmad, R. Trivedi, and S. Biradar, “3D interconnected architecture of h-BN reinforced ZrO2 composites: structural evolution and enhanced mechanical properties for bone implant applications,” Ceram. Int., vol. 45, no. 1, pp. 1037–1048, 2019.

[15] B. Z. Janos, E. Lugscheider, and P. Remer, “Effect of thermal aging on the erosion resistance of air plasma sprayed zirconia thermal barrier coating,” Surf. Coatings Technol., vol. 113, no. 3, pp. 278–285, 1999.

[16] L. B. Chen, “Yttria-stabilized zirconia thermal barrier coatings—a review,” Surf. Rev. Lett., vol. 13, no. 05, pp. 535–544, 2006.

[17] R. Kusiorowski, J. Wojsa, B. Psiuk, and T. Wala, “Influence of zirconia addition on the properties of magnesia refractories,” Ceram. Int., vol. 42, no. 9, pp. 11373–11386, 2016.

[18] H. P. Beck and C. Kaliba, “On the solubility of Fe, Cr and Nb in ZrO2 and its effect on thermal dilatation and polymorphic transition,” Mater. Res. Bull., vol. 25, no. 9, pp. 1161–1168, 1990.

[19] T. Selvaraj, B. Johar, and S. F. Khor, “Iron/zinc doped 8 mol\% yttria stabilized zirconia electrolytes for the green fuel cell technology: a comparative study of thermal analysis, crystalline structure, microstructure, mechanical and electrochemical properties,” Mater. Chem. Phys., vol. 222, pp. 309–320, 2019.

[20] M. Ozawa, “Metal Oxide Materials for Automotive Catalysts,” Nov. Struct. Met. Inorg. Mater., pp. 357–367, 2019.

[21] M. Winter and R. J. Brodd, “What are batteries, fuel cells, and supercapacitors?,” Chem. Rev., vol. 104, no. 10, pp. 4245–4270, 2004.

[22] T. H. Bui, B. Thangavel, M. Sharipov, K. Chen, and J. H. Shin, “Smartphone-Based Portable Bio-Chemical Sensors: Exploring Recent Advancements,” Chemosensors, vol. 11, no. 9, p. 468, 2023.

[23] C. V. Reddy et al., “Efficient removal of toxic organic dyes and photoelectrochemical properties of iron-doped zirconia nanoparticles,” Chemosphere, vol. 239, p. 124766, 2020, doi: 10.1016/j.chemosphere.2019.124766.

[24] N. Isa, T. W. Kian, G. Kawamura, A. Matsuda, and Z. Lockman, “Synthesis of TiO2 Nanotubes Decorated with Ag Nanoparticles (TNTs/AgNPs) for Visible Light Degradation of Methylene Blue,” J. Phys. Conf. Ser., vol. 1082, no. 1, 2018, doi: 10.1088/1742-6596/1082/1/012105.

[25] G. Chen, J. J. Peng, C. Song, F. Zeng, and F. Pan, “Interplay between chemical state, electric properties, and ferromagnetism in Fe-doped ZnO films,” J. Appl. Phys., vol. 113, no. 10, 2013.

[26] V. G. Neto, C. G. B. Pereira, F. D. Faglioni, C. A. Fortulan, and C. R. Foschini, “ZrO2-CNT composite production through reducing atmosphere,” Int. J. Adv. Manuf. Technol., vol. 122, no. 7, pp. 3323–3335, 2022.

[27] B. Milsom, G. Viola, Z. Gao, F. Inam, T. Peijs, and M. J. Reece, “The effect of carbon nanotubes on the sintering behaviour of zirconia,” J. Eur. Ceram. Soc., vol. 32, no. 16, pp. 4149–4156, 2012.

[28] G. Xu, Y.-W. Zhang, C.-S. Liao, and C.-H. Yan, “Doping and grain size effects in nanocrystalline ZrO2-Sc2O3 system with complex phase transitions: XRD and Raman studies,” Phys. Chem. Chem. Phys., vol. 6, no. 23, pp. 5410–5418, 2004.

[29] B. Fan, Z. Zhang, C. Liu, and Q. Liu, “Investigation of sulfated iron-based catalysts with different sulfate position for selective catalytic reduction of NOx with NH3,” Catalysts, vol. 10, no. 9, p. 1035, 2020.

[30] C. Fletcher, Y. Jiang, C. Sun, and R. Amal, “Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping,” Nanoscale, vol. 6, no. 13, pp. 7312–7318, 2014.

[31] Q. Cheng, W. Yang, Q. Chen, J. Zhu, D. Li, L. Fu, & L. Zhou., “Fe-doped zirconia nanoparticles with highly negative conduction band potential for enhancing visible light photocatalytic performance,” Appl. Surf. Sci., vol. 530, p. 147291, 2020, doi: 10.1016/j.apsusc.2020.147291.

[32] M.A. Rahman, D. Lamb, M.M. Rahman, M.M. Bahar, P. Sanderson, S. Abbasi, ... & R. Naidu.., “Removal of arsenate from contaminated waters by novel zirconium and zirconium-iron modified biochar,” J. Hazard. Mater., vol. 409, 2020, p. 124488, 2021, doi: 10.1016/j.jhazmat.2020.124488.

[33] W. Ahmed, J. Iqbal, S.O. Aisida, A. Badshah, I. Ahmad, K. Alamgir, & I.H. Gul., “Structural, magnetic and dielectric characteristics of optically tuned Fe doped ZrO2 nanoparticles with visible light driven photocatalytic activity,” Mater. Chem. Phys., vol. 251, no. October 2019, p. 122999, 2020, doi: 10.1016/j.matchemphys.2020.122999.

[34] K. Gurushantha, K.S. Anantharaju, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, C. Shivakumara, ... & M.R. Anilkumar., “Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: Structural, photocatalytic and photoluminescent properties,” J. Mol. Catal. A Chem., vol. 397, pp. 36–47, 2015, doi: 10.1016/j.molcata.2014.10.025.

[35] M. C. Hidalgo et al., “EXAFS study and photocatalytic properties of un-doped and iron-doped ZrO2-TiO2 (photo-) catalysts,” Catal. Today, vol. 128, no. 3-4 SPEC. ISS., pp. 245–250, 2007, doi: 10.1016/j.cattod.2007.07.010. [36] J. Zhao, C. Lyu, R. Zhang, Y. Han, Y. Wu, and X. Wu, “Self-cleaning and regenerable nano zero-valent iron modified PCN-224 heterojunction for photo-enhanced radioactive waste reduction,” J. Hazard. Mater., vol. 442, 2022, p. 130018, 2023, doi: 10.1016/j.jhazmat.2022.130018.