HOME: Online Issues

IoT-Based intelligent system for headwater phenomenon detection and alerts using ESP32

E-mail Print PDF

mac25

Rozan Boudville

Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

Afif Luqmanulhakim

Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

Wan Izzat Hakimi

Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

Muhammad Adly Hisyam

Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia

Nur Raihah

Faculty of Electrical Engineering, Universiti Teknologi MARA Cawangan Pulau Pinang, Malaysia


Abstract

Headwater phenomena, characterised by rapid increases in river levels and flow velocity, pose significant risks to downstream communities. This study presents an Internet of Things (IoT)-based intelligent monitoring and alert system for detecting headwater phenomena in real time. The proposed system integrates multiple ESP32 microcontrollers with water level and rainfall sensors to monitor environmental parameters continuously. Data are transmitted to Firebase for cloud storage and further processed using Google Sheets for visualisation and analysis. A decision-making algorithm correlates rainfall intensity with water level changes to classify potential hazards and trigger appropriate alerts. Notifications are issued through an LCD display, buzzer, and Telegram alerts, ensuring timely responses. The system enhances early warning capabilities, minimises damage risks, and improves public safety in flood-prone regions. The integration of cloud computing and IoT technology ensures real-time monitoring, remote access, and automated data-driven decision-making. Experimental results demonstrate the system’s effectiveness in accurately detecting and responding to headwater-related hazards, making it a viable solution for disaster preparedness and mitigation.

pdf

Keyword: Real-time monitoring, Firebase, Google Sheet, ESP32, Internet of Things, Headwater

DOI: 10.24191/esteem.v21iMarch.4936.g3086

References:

[1] A. Radhika, G. Manochitra, K. Keerthanen, K. Mahendran, R. M. Kumar, and N. M. Sarath, “Low-cost IoT-based early detection of flood monitoring and alert system using GPS and GSM,” 2022, p. 040007. Available: https://doi.org/10.1063/5.0108131

[2] M. A. H. Razian, H. A. Kadir, A. A. A. Muttalib, M. A. M. Razi, and B. S. K. K. Ibrahim, “Design of vibration and turbulence alert system for headwater phenomena,” J. Adv. Res. Appl. Mech., vol. 119, no. 1, pp. 174–192, Jul. 2024. Available: https://doi.org/10.37934/aram.119.1.174192

[3] A. A. M. Faudzi, M. M. Raslan, and N. E. Alias, “IoT-based real-time monitoring system of rainfall and water level for flood prediction using LSTM network,” IOP Conf. Ser. Earth Environ. Sci., vol. 1143, no. 1, p. 012015, Feb. 2023. Available: https://doi.org/10.1088/1755-1315/1143/1/012015

[4] M. A. M. Kameel et al., “A development of headwater phenomenon warning and monitoring system,” in Proc. 2020 IEEE 5th Int. Symp. Telecommun. Technol. (ISTT), IEEE, Nov. 2020, pp. 174–179. Available: https://doi.org/10.1109/ISTT50966.2020.9279394

[5] R. Boudville, J. B. M. Tapah, A. A. F. B. M. Yuzi, N. A. I. B. A. Johan, M. I. Bin Daing, and N. A. S. B. Aliastar, “Development of IoT-based headwater phenomenon monitoring and warning system,” in Proc. 2024 IEEE 14th Int. Conf. Control Syst., Comput. Eng. (ICCSCE), IEEE, Aug. 2024, pp. 232–236. Available: https://doi.org/10.1109/ICCSCE61582.2024.10696835

[6] “Laman Web Rasmi Public InfoBanjir.” Available: https://publicinfobanjir.water.gov.my/?lang=en

[7] H. A. Kadir, M. H. A. Wahab, M. F. M. Mohsin, H. Hashim, H. bin Hashim, and A. N. bin A. Tajuddin, “Flood alert notification system (FANoS),” 2009. [Online]. Available: https://www.researchgate.net/publication/274458098

[8] N. M. Zain, L. S. Elias, Z. Paidi, and M. Othman, “Flood warning and monitoring system (FWMS) using GSM technology,” 2020. [Online]. Available: https://jcrinn.com

[9] R. Affandi, Z. Omar, and M. F. Lee, “Development of the headwater early signs by using Internet of Things (IoT),” 2023. [Online]. Available: http://myjms.mohe.gov.my/index.php/ijear