![]() |
|
Muhammad Fahmi Muhammad Iskandar Civil Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Anas Ibrahim Civil Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Zul Azmi Mohtar Civil Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Muhammad Faizal Pakir Mohamed Latiff Civil Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, 13500 Permatang Pauh, Pulau Pinang, Malaysia Nasehir Khan E.M Yahaya National Institute Water Research Malaysia (NAHRIM), 43300 Seri Kembangan, Selangor, Malaysia |
|
Abstract | |
Southeast Asia, home to a population of 691.97 million people, faces significant challenges related to rainfall patterns. This study critically reviews 40 articles to explore the intricate rainfall patterns across 11 Southeast Asian countries, examining seasonal variations, impacts, influencing factors, and mitigation strategies. The objective is to develop a comprehensive understanding of rainfall dynamics in the region, particularly its influence on the region’s ecosystem and livelihoods. The analysis reveals distinct seasonal periods, with June to September marking the peak rainfall period due to the summer monsoon season, while November to April signifies the onset of dry seasons in several countries. Rainfall impact range plays a crucial role in the economies of nations, particularly in the agricultural sector, where it serves as a vital source of sustenance. However, it also poses risks, including flooding, landslides, and drought. The study emphasizes the significant role of the El Niño Southern Oscillation (ENSO) in influencing rainfall variability across Southeast Asia, with El Niño events often associated with drier conditions and La Niña events with wetter conditions. To mitigate these challenges, Southeast Asian nations have implemented various strategies, including infrastructure development, community-based initiatives, and awareness campaigns. Further research is needed to explore specific factors influencing rainfall in each country, develop more accurate forecasting models, investigate innovative mitigation strategies, and evaluate the effectiveness of existing measures. |
|
Keyword: Seasonal, Flooding, ENSO, Monsoon, Rainfall, Southeast Asia | |
DOI: 10.24191/esteem.v21iMarch.4892.g3087 |
|
References: | |
[1] O. O. S. Yaya and X. V. Vo, “Statistical analysis of rainfall and temperature (1901–2016) in south-east Asian countries,” Theor. Appl. Climatol., vol. 142, pp. 287–303, 2020. Available: https://doi.org/10.1007/s00704-020-03307-z [2] M. Edirisinghe, N. Alahacoon, M. Ranagalage, and Y. Murayama, “Long-Term Rainfall Variability and Trends for Climate Risk Management in the Summer Monsoon Region of Southeast Asia,” Adv. Meteorol., vol. 2023, no. 1, 2023. Available: https://doi.org/10.1155/2023/2693008 [3] B. Van Wee and D. Banister, “How to Write a Literature Review Paper?,” Transp. Rev., vol. 36, no. 2, pp. 278–288, 2016. Available: https://doi.org/10.1080/01441647.2015.1065456 [4] A. Sofro, R. A. Riani, K. N. Khikmah, R. W. Romadhonia, and D. Ariyanto, “Analysis of Rainfall in Indonesia Using a Time Series-Based Clustering Approach,” BAREKENG: J. Ilmu Mat. Terapan, vol. 18, no. 2, pp. 837–848, 2024. Available: https://doi.org/10.30598/barekengvol18iss2pp0837-0848 [5] K. Torsri, Z. Lin, V. N. Dike, H. Zhang, C. Wu, and Y. Yu, “Simulation of Summer Rainfall in Thailand by IAP-AGCM4.1,” Atmosphere, vol. 13, no. 5, 2022. Available: https://doi.org/10.3390/atmos13050805 [6] N. Senganatham, V. Souvannasouk, and H. Moonphoxay, “Optimal Long-term Rainfall Trends Prediction under Climate Change Scenarios in Small Basin: Case study Sedon Basin, Lao PDR,” Maejo Int. J. Energy Environ. Commun., vol. 3, pp. 70–73, Aug. 2021. [7] K. T. Oo, “Inter-Annual Variability of Southwest Monsoon Rainfall in Myanmar: Insights from Ocean-Atmosphere Interactions,” Terr. Atmos. Ocean. Sci., 2023. Available: https://doi.org/10.21203/rs.3.rs-3240726/v1 [8] H. S. Lee, “General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity,” Water (Switz.), vol. 7, no. 4, pp. 1751–1768, 2015. Available: https://doi.org/10.3390/w7041751 [9] S. Pen, S. Rad, L. Ban, S. Brang, P. Nuth, and L. Liao, “An Analysis of Extreme Rainfall Events in Cambodia,” Atmosphere, vol. 15, no. 8, 2024. Available: https://doi.org/10.3390/atmos15081017 [10] C. Thanh, Q. V. Doan, D. H. Quan, and D. A. Tuan, “Relationship Between Intraseasonal Oscillations and Abnormal Rainfall in Vietnam,” EGUsphere, vol. 15, pp. 37–48, 2024. Available: https://doi.org/10.5194/egusphere-2024-2219 [11] M. F. R. Hasan et al., “Assessment and simulation of potential landslide caused by the rainfall intensity in Batu City during 2021,” IOP Conf. Ser.: Earth Environ. Sci., vol. 1314, no. 1, 2024. Available: https://doi.org/10.1088/1755-1315/1314/1/012017 [12] J. Hong, W. Agustin, S. Yoon, and J. S. Park, “Changes of extreme precipitation in the Philippines, projected from the CMIP6 multi-model ensemble,” Weather Clim. Extremes, vol. 37, 2022. Available: https://doi.org/10.1016/j.wace.2022.100480 [13] X. Li, X. Wang, and V. Babovic, “Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013,” Int. J. Climatol., vol. 38, no. 1, pp. 125–141, 2018. Available: https://doi.org/10.1002/joc.5165 [14] M. Mubarak, R. Rifardi, A. Nurhuda, R. F. Syahputra, and S. F. Retnawaty, “Sea Surface Temperature (SST) and Rainfall Trends in the Singapore Strait from 2002 to 2019,” Indones. J. Geogr., vol. 54, no. 1, pp. 55–61, 2022. Available: https://doi.org/10.22146/IJG.68738 [15] A. M. Takeleb and M. A. Ximenes, “Trend Analysis for Annual Rainfall Data in Dili, Timor-Leste using Mann Kendall Method,” J. Eng. Sci., vol. 1, no. 1, pp. 1–10, 2020. Available: http://tljes.org/index.php/tljes/data [16] A. H. Syafrina, M. D. Zalina, and L. Juneng, “Historical trend of hourly extreme rainfall in Peninsular Malaysia,” Theor. Appl. Climatol., vol. 120, no. 1–2, pp. 259–285, 2015. Available: https://doi.org/10.1007/s00704-014-1145-8 [17] M. H. Rosly, H. M. Mohamad, N. Bolong, and N. S. H. Harith, “An Overview: Relationship of Geological Condition and Rainfall with Landslide Events at East Malaysia,” Trends Sci., vol. 19, no. 8, 2022. Available: https://doi.org/10.48048/tis.2022.3464 [18] D. S. N. A. B. P. A. Hasan, U. Ratnayake, and S. Shams, “Evaluation of rainfall and temperature trends in Brunei Darussalam,” AIP Conf. Proc., vol. 1705, no. 1, 2016. Available: https://doi.org/10.1063/1.4940282 [19] M. F. Hanif, M. R. U. Mustafa, M. U. Liaqat, A. M. Hashim, and K. W. Yusof, “Evaluation of Long?Term Trends of Rainfall in Perak, Malaysia,” Climate, vol. 10, no. 3, pp. 1–20, 2022. Available: https://doi.org/10.3390/cli10030044 [20] S. Sangkhaphan and Y. Shu, “Impact of Rainfall on Agricultural Growth in Thailand: Evidence in Farming and Fishing Activities,” J. Econ. Sustain. Dev., vol. 10, no. 16, pp. 162–174, 2019. Available: https://doi.org/10.7176/jesd/10-16-19 [21] K. C. Chao and J. D. Nelson, “Effect of Climate Change on Rainfall Induced Failures for Embankment Slopes in Timor-Leste,” Int. Conf. Soil Mech. Geotech. Eng., 2022. Available: https://www.researchgate.net/publication/364327564 [22] S. Ligong, L. M. Sidek, G. Hayder, and N. Mohd Dom, “Application of Rainfall Threshold for Sediment-Related Disasters in Malaysia: Status, Issues and Challenges,” Water (Switzerland), vol. 14, no. 20, p. 3212, 2022. Available: https://doi.org/10.3390/w14203212 [23] M. H. M. Saad et al., “Analysis of the Flash Flood Event and Rainfall Distribution Pattern on Relau River Basin Development, Penang, Malaysia,” Planning Malaysia, vol. 21, no. 1, pp. 58–71, 2023. Available: https://doi.org/10.21837/PM.V21I25.1224 [24] C. Kristo, H. Rahardjo, and A. Satyanaga, “Effect of variations in rainfall intensity on slope stability in Singapore,” Int. Soil Water Conserv. Res., vol. 5, no. 4, pp. 258–264, 2017. Available: https://doi.org/10.1016/j.iswcr.2017.07.001 [25] C. P. Chang, W. Zhuo, M. John, and C.-H. Liao, “Annual Cycle of Southeast Asia—Maritime Continent Rainfall and the Asymmetric,” J. Climate, vol. 18, no. 2, pp. 287–301, 2005. Available: https://doi.org/10.1175/JCLI-3257.1 [26] Y. Y. Loo, L. Billa, and A. Singh, “Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia,” Geosci. Front., vol. 6, no. 6, pp. 817–823, 2015. Available: https://doi.org/10.1016/j.gsf.2014.02.009 [27] C. C. Ibebuchi, S. Rainey, O. A. Obarein, A. Silva, and C. C. Lee, “Comparison of machine learning models in forecasting different ENSO types,” Phys. Scr., vol. 99, no. 8, p. 086007, 2024. Available: https://doi.org/10.1088/1402-4896/ad65c5 [28] M. Adnan, “Impacts Of El-Nino Southern Oscillation (ENSO) On Fisheries And Impacts Of El-Nino Southern Oscillation (ENSO),” in CMF Conf. SAU, Sylhet Agric. Univ., 2023. Available: https://doi.org/10.13140/RG.2.2.19633.35682 [29] M. Q. Villafuerte, J. Matsumoto, and H. Kubota, “Changes in extreme rainfall in the Philippines (1911–2010) linked to global mean temperature and ENSO,” Int. J. Climatol., vol. 35, no. 8, pp. 2033–2044, 2015. Available: https://doi.org/10.1002/joc.4105 [30] I. L. Corporal-Lodangco, L. M. Leslie, and P. J. Lamb, “Impacts of ENSO on Philippine tropical cyclone activity,” J. Climate, vol. 29, no. 5, pp. 1877–1897, 2016. Available: https://doi.org/10.1175/JCLI-D-14-00723.1 [31] M. Putra, M. S. Rosid, and D. Handoko, “A Review of Rainfall Estimation in Indonesia: Data Sources, Techniques, and Methods,” Signals, vol. 5, no. 3, pp. 542–561, 2024. Available: https://doi.org/10.3390/signals5030030 [32] M. A. Islam, A. Chan, M. J. Ashfold, C. G. Ooi, and M. Azari, “Effects of El-Niño, Indian Ocean Dipole, and Madden-Julian Oscillation on surface air temperature and rainfall anomalies over Southeast Asia in 2015,” Atmosphere, vol. 9, no. 9, pp. 1–14, 2018. Available: https://doi.org/10.3390/atmos9090352 [33] M. E. Toriman and M. B. Gasim, “Floods in Malaysia: Historical reviews, causes, effects and mitigations approach,” Int. J. Interdiscip. Res. Innov., vol. 2, no. 4, pp. 59–65, 2014. Available: http://eprints.unisza.edu.my/id/eprint/4945 [34] H. Hartanto, “The Role of Indonesia in Leading Efforts to Mitigate Climate Change in ASEAN in 2023,” JDKP J. Desentralisasi Dan Kebijakan Publik, vol. 5, no. 1, pp. 62–69, 2024. Available: https://doi.org/10.30656/jdkp.v5i1.8456 [35] Climate Risk Country Profile: Timor-Leste, The World Bank Group and the Asian Development Bank, 2021. [36] A. R. As-syakur, T. Tanaka, T. Osawa, and M. S. Mahendra, “Indonesian rainfall variability observation using TRMM multi-satellite data,” Int. J. Remote Sens., vol. 34, no. 21, pp. 7723–7738, 2013. Available: https://doi.org/10.1080/01431161.2013.826837 [37] Z. Azmi, A. Shukri, and F. Ahmad, “Rainfall erosivity estimation for Northern and Southern peninsular Malaysia using Fourneir indexes,” Procedia Eng., vol. 125, pp. 179–184, 2015. Available: https://doi.org/10.1016/j.proeng.2015.11.026 [38] M. E. E. Hassim and B. Timbal, “Observed rainfall trends over Singapore and the Maritime Continent from the perspective of regional-scale weather regimes,” J. Appl. Meteorol. Climatol., vol. 58, no. 2, pp. 365–384, 2019. Available: https://doi.org/10.1175/JAMC-D-18-0136.1 [39] S. J. I. Ignacio-Reardon and J. J. Luo, “Evaluation of the Performance of CMIP6 Climate Models in Simulating Rainfall over the Philippines,” Atmosphere, vol. 14, no. 9, p. 1459, 2023. Available: https://doi.org/10.3390/atmos14091459 [40] Z. A. Mohtar, A. S. Yahaya, F. Ahmad, S. Suri, and M. H. Halim, “Trends for Daily Rainfall in Northern and Southern Region of Peninsular Malaysia,” J. Civ. Eng. Res., vol. 4, pp. 222–227, 2014. Available: https://doi.org/10.5923/c.jce.201402.38 [41] Nurdiati, S., Sopaheluwakan, A., & Septiawan, P. (2022). “Joint Pattern Analysis of Forest Fire and Drought Indicators in Southeast Asia Associated with ENSO and IOD.” Atmosphere, Vol. 13, Issue 8, Page 1198. Available: https://doi.org/10.3390/atmos13081198 [42] Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2017). “Ensemble Climate Projections of Mean and Extreme Rainfall Over Vietnam.” Global and Planetary Change, Vol. 148, Page 96–104. Available: https://doi.org/10.1016/j.gloplacha.2016.12.003 [43] Schlör, J., Strnad, F., Capotondi, A., & Goswami, B. (2024). “Contribution of El Niño Southern Oscillation (ENSO) Diversity to Low-Frequency Changes in ENSO Variance.” Geophysical Research Letters, Vol. 51, Issue 14. Available: https://doi.org/10.1029/2024GL109179 [44] Sein, Z. M. M., Ullah, I., Saleem, F., Zhi, X., Syed, S., & Azam, K. (2021). “Interdecadal Variability in Myanmar Rainfall in the Monsoon Season (May–October) Using Eigen Methods.” Water (Switzerland), Vol. 13, Issue 5. Available: https://doi.org/10.3390/w13050729 [45] Setiyono, H., Bambang, A. N. B., Helmi, M., & Yusuf, M. (2022). “Effect of Rainfall Season on Coastal Flood in Semarang City, Central Java, Indonesia.” International Journal of Health Sciences, Vol. 6, Issue 1, Page 7584–7595. Available: https://doi.org/10.53730/ijhs.v6ns1.6618 [46] Vance, W. H., Bell, R. W., & Seng, V. (2004). “Rainfall Analysis for the Provinces of Battambang, Kampong Cham and Takeo, The Kingdom of Cambodia.” School of Environmental Science, Murdoch University, WA. 6150, Australia. [47] Zhang, C., Adames, F., Khouider, B., Wang, B., & Yang, D. (2020). “Four Theories of the Madden-Julian Oscillation.” Reviews of Geophysics, Vol. 58, Issue 3. Available: https://doi.org/10.1029/2019RG000685 |