![]() |
|
|
Nur Alwani Ali Bashah Faculty of Chemical Engineerin , Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia Advanced Materials for Effective Pollution Mitigation (AdvaMEP), Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia Wan Zuraida Wan Kamis Faculty of Chemical Engineerin , Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia Advanced Materials for Effective Pollution Mitigation (AdvaMEP), Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia Muhammad Zahiruddin Ramli Faculty of Chemical Engineerin , Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia Advanced Materials for Effective Pollution Mitigation (AdvaMEP), Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh Campus, 13500 Permatang Pauh, Pulau Pinang, Malaysia Siti Shawalliah Idris Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Mohamad Anuar Kamaruddin Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
|
|
| Abstract | |
|
This study investigates the influence of pyrolysis time on product yield and bio-oil quality in the catalytic co-pyrolysis (CCP) of cotton fabric waste (CFW) and polypropylene plastic waste (PPW). The experiments were conducted in a fixed-bed microreactor using a chromium-extracted alumina (15CE) catalyst, with reaction times varied between 15 and 75 min under constant conditions (500 °C, 1:1 CFW/PPW ratio, and 1:1 F/C ratio). The results indicate that pyrolysis time significantly affects bio-oil and gas production. Extending the reaction time to 60 min maximized bio-oil yield, reaching 76.4 %. The minimal variation in char yield across different pyrolysis times suggests that the thermal degradation of the feedstock was completed within the first 15 min of CCP. GC-MS analysis revealed that bio-oil primarily consists of hydrocarbon and alcohol, while the concentrations of acids and sugar-derived compounds decreased, indicating their conversion into valuable fuel and chemical products. At a reaction time of 75 min, the formation of aromatic hydrocarbons increased, accompanied by a reduction in oxygenated compounds. Based on both bio-oil yield and quality, a pyrolysis time of 60 min was identified as the best condition for the catalytic co-pyrolysis of CFW-PPW using the 15CE catalyst, achieving the highest yield while maintaining an acceptable bio-oil quality. |
|
| Keyword: Catalytic co-pyrolysis, Cotton fabric waste, Industrial waste, Plastic, Bio-oil, Pyrolysis time | |
| References: | |
|
[1] J. Chattopadhyay, T. S. Pathak, R. Srivastava, and A. C. Singh, “Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis,” Energy, vol. 103, pp. 513–521, May 2016. Available: https://doi.org/10.1016/j.energy.2016.03.015 [2] A. W. Gin, H. Hassan, M. A. Ahmad, B. H. Hameed, and A. T. M. Din, “Co-pyrolysis of polyolefin mixtures and oil palm fibre for the production of liquid fuel: kinetics and thermodynamic study,” Biomass Conversion and Biorefinery, vol. 14, no. 5, pp. 6381–6395, May 2022. Available: https://doi.org/10.1007/s13399-022-02822-5 [3] H. Dahman, E. B. Kilani, K. El Harfi, K. Loubar, M. Jeguirim, S. Jellali, and A. Aboulkas, “Efficient biofuel production from olive pomace and polyethylene waste blend via pressurized co-pyrolysis: optimization and characterization,” Waste and Biomass Valorization, Jan. 2025. Available: https://doi.org/10.1007/s12649-024-02860-2 [4] S. Kakku, N. Jonna, A. G. Chakinala, J. Joshi, R. Vinu, C. Thota, and A. Sharma, “Co-pyrolysis studies of agricultural residue and plastics for process optimization in a rotary kiln reactor system,” Industrial & Engineering Chemistry Research, Dec. 2024. Available: https://doi.org/10.1021/acs.iecr.4c03309 [5] H. Al-Haj Ibrahim, “Introductory Chapter: Pyrolysis,” Recent Advances in Pyrolysis, Jan. 2020. Available: https://doi.org/10.5772/intechopen.90366 [6] S. H. Chang, “Plastic waste as pyrolysis feedstock for plastic oil production: A review,” Science of The Total Environment, p. 162719, Mar. 2023. Available: https://doi.org/10.1016/j.scitotenv.2023.162719 [7] J. Akhtar and N. Saidina Amin, “A review on operating parameters for optimum liquid oil yield in biomass pyrolysis,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 5101–5109, Sep. 2012. Available: https://doi.org/10.1016/j.rser.2012.05.033 [8] H. C. Park, B.-K. Lee, H. S. Yoo, and H. S. Choi, “Influence of operating conditions for fast pyrolysis and pyrolysis oil production in a conical spouted-bed reactor,” Chem. Eng. Technol., vol. 42, no. 12, pp. 2493–2504, Dec. 2019, Available: https://doi.org/10.1002/ceat.201900082. [9] H. Zhang, Y. Wang, S. Shao, and R. Xiao, “An experimental and kinetic modeling study including coke formation for catalytic pyrolysis of furfural,” Combustion and Flame, vol. 173, pp. 258–265, Sep. 2016. Available: https://doi.org/10.1016/j.combustflame.2016.08.019 [10] A. N. Awang, A. R. Mohamed, Noor, P. Y. Hoo, and N. N. Kasim, “Torrefaction of Leucaena Leucocephala under isothermal conditions using the Coats–Redfern method: kinetics and surface morphological analysis,” Reaction Kinetics Mechanisms and Catalysis, vol. 128, no. 2, pp. 663–680, Sep. 2019. Available: https://doi.org/10.1007/s11144-019-01659-w [11] R. Miandad, A. S. Nizami, M. Rehan, M. A. Barakat, M. I. Khan, A. Mustafa, I. M. I. Ismail, and J. D. Murphy, “Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil,” Waste Management, vol. 58, pp. 250–259, Dec. 2016. Available: https://doi.org/10.1016/j.wasman.2016.09.023 [12] N. Ahmad, M. Imtiaz, M. Hussain, U.-S. Amjad, I. M. Maafa, U. Ahmed, A. G. A. Jameel, and A. Bafaqeer, “Catalytic co-pyrolysis of Vachellia Farnesiana with polypropylene plastic to produce bio-oil: Parameter optimization study,” Fuel, vol. 367, p. 131495, Jul. 2024,. Available: https://doi.org/10.1016/j.fuel.2024.131495 [13] N. A. A. Bashah, M. Z. Ramli, W. Z. W. Kamis, S. S. Idris, M. A. Kamaruddin, A. S. Zulkipli, and M. A. Olutoye, “Chromium-extracted aluminum catalyst for co-pyrolysis of cotton fabric waste and polypropylene plastic waste to bio-oil,” Journal of Environmental Chemical Engineering, vol. 12, no. 5, p. 113757, Oct. 2024. Available: https://doi.org/10.1016/j.jece.2024.113757 [14] L. Maulinda, H. Husin, N. Arahman, C. M. Rosnelly, M. Syukri, Nurhazanah, F. Nasution, and Ahmadi, “The influence of pyrolysis time and temperature on the composition and properties of bio-oil prepared from tanjong leaves (Mimusops Elengi),” Sustainability, vol. 15, no. 18, p. 13851, Jan. 2023. Available: https://doi.org/10.3390/su151813851 [15] H. S. Chua, D. Langes Langeswaran, H. G. How, T. T. Goh, K. T. Tan, L.-P. Wong, and M. J. K. Bashir, “Sustainable bio-oil production from municipal solid waste: optimising pyrolysis parameters for superior yield and quality,” Results in Engineering, pp. 105445–105445, May 2025. Available: https://doi.org/10.1016/j.rineng.2025.105445 [16] M. M. Hasan, M. G. Rasul, M. M. K. Khan, N. Ashwath, and M. I. Jahirul, “Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments,” Renewable and Sustainable Energy Reviews, vol. 145, p. 111073, Jul. 2021. Available: https://doi.org/10.1016/j.rser.2021.111073 [17] F. J. Mastral, E. Esperanza, P. Garc??a, and M. Juste, “Pyrolysis of high-density polyethylene in a fluidised bed reactor. Influence of the temperature and residence time,” Journal of Analytical and Applied Pyrolysis, vol. 63, no. 1, pp. 1–15, Mar. 2002. Available: https://doi.org/10.1016/s0165-2370(01)00137-1 [18] C. Zhang, L. Chao, Z. Zhang, L. Zhang, Q. Li, H. Fan, S. Zhang, Q. Liu, Y. Qiao, Y. Tian, Y. Wang, and X. Hu, “Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature,” Renewable and Sustainable Energy Reviews, vol. 135, p. 110416, Jan. 2021. Available: https://doi.org/10.1016/j.rser.2020.110416 [19] K. Venkatesan, S. He, K. Seshan, P. Selvam, and R. Vinu, “Selective production of aromatic hydrocarbons from lignocellulosic biomass via catalytic fast-hydropyrolysis using W2C/?-Al2O3,” Catalysis Communications, vol. 110, pp. 68–73, May 2018. Available: https://doi.org/10.1016/j.catcom.2018.03.011 [20] Y. Xue, A. Kelkar, and X. Bai, “Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer,” Fuel, vol. 166, pp. 227–236, Feb. 2016. Available: https://doi.org/10.1016/j.fuel.2015.10.125 [21] C. Dorado, C. A. Mullen, and A. A. Boateng, “H-ZSM5 catalyzed co-pyrolysis of biomass and plastics,” ACS Sustainable Chemistry & Engineering, vol. 2, no. 2, pp. 301–311, Feb. 2014. Available: https://doi.org/10.1021/sc400354g [22] W. T. Tsai, M. K. Lee, and Y. M. Chang, “Fast pyrolysis of rice husk: Product yields and compositions,” Bioresource Technology, vol. 98, no. 1, pp. 22–28, Jan. 2007. Available: https://doi.org/10.1016/j.biortech.2005.12.005 [23] Pranoto and Mazlan, “The characterization of pyrolysis oil from plastic waste using FTIR and GC-MS techniques,” in IOP Conference Series: Earth and Environmental Science, Dec. 2023, p. 012058. Available: https://doi.org/10.1088/1755-1315/1268/1/012058 |
|

















