![]() |
|
|
Anis Nazira Alizan Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Malaysia Faraziehan Senusi Hybrid Nanomaterial, Interfaces & Simulation (HYMFAST), Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Malaysia Nurulhuda Amri Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Malaysia Nor Aida Zubir Hybrid Nanomaterial, Interfaces & Simulation (HYMFAST), Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh, Malaysia
|
|
| Abstract | |
|
Membrane technology is recognized as a reliable and efficient method for the treatment of oily wastewater, particularly in the removal of oil-in-water emulsions with droplet sizes below 20 µm. However, the fouling problem remains one of the major challenges for polymeric membranes. This study investigates the impact of incorporating silver-catecholamine nanoparticles on the performance of Polysulfone (PSf)/Silver-Catecholamine (Ag-CA) mixed-matrix hybrid membrane for oil-in-water emulsions removal. The Ag-CA nanoparticles were synthesized by mixing tannic acid and tetraethylenepentamine into a tris-HCl solution, then incorporated into the membrane dope solution. The PSf/Ag-6C1A hybrid membranes were cast using an automatic membrane casting machine via a phase inversion process, and then the permeability and separation performance of the membranes were measured using a membrane test rig to observe the flux, removal efficiency, and flux recovery ratio of the membranes. Based on the experiment, the PSf/Ag-6C1A hybrid membrane has shown increased pure water flux and high removal efficiency, as well as a flux recovery ratio compared to the pristine PSf membrane. It is shown that the silver-catecholamine nanoparticles can improve the antifouling properties of the pristine PSf membranes. The PSf/Ag-6C1A hybrid membrane exhibits enhanced surface properties with a water contact angle of 76° and an underwater oil contact angle of 130.7°. These characteristics contributed to its higher water flux (14.01 LMH), excellent removal efficiency (99.79%), and flux recovery ratio of 95.71%. |
|
| Keyword: Polymer, Separation, Silver, Catecholamine, Membrane, Emulsion | |
| References: | |
|
[1] K. Hou, K. Jin, Z. Fan, P. Du, Y. Ji, J. Wang, Y. Zhao, C. Yao, and Z. Cai, “Facile fabrication of fabric-based membrane for adjustable oil-in-water emulsion separation, suspension filtration and dye removal,” Sep. Purif. Technol., vol. 323, p. 124467, Oct. 2023. Available: https://doi.org/ 10.1016/J.SEPPUR.2023.124467 [2] E. S. Dmitrieva, T. S. Anokhina, E. G. Novitsky, V. V. Volkov, A. V. Volkov, and I. L. Borisov, “Polymeric Membranes for Oil-Water Separation: A Review,” Polymers, vol. 14, no. 5. MDPI, Mar. 01, 2022. doi: Available: https://doi.org/ 10.3390/polym14050980 [3] X. Yang, L. Yan, Y. Wu, Y. Liu, and L. Shao, “Biomimetic hydrophilization engineering on membrane surface for highly-efficient water purification,” J. Memb. Sci., vol. 589, 2019. Available: https://doi.org/ 10.1016/j.memsci.2019.117223 [4] A. Mazumder, Z. Chowdhury, D. Sen, and C. Bhattacharjee, “Estimation of membrane fouling and its alleviation with novel biocidal silver coordinated metallosurfactant cleaning solution,” Surfaces and Interfaces, vol. 26, 2021. Available:https://doi.org/ 10.1016/j.surfin.2021.101360 [5] M. Tawalbeh, A. Al Mojjly, A. Al-Othman, and N. Hilal, “Membrane separation as a pre-treatment process for oily saline water,” Desalination, vol. 447, pp. 182–202, Dec. 2018. Available: https://doi.org/ 10.1016/J.DESAL.2018.07.029 [6] D. Mohanadas, P. Mimie, I. Nordin, R. Rohani, and N. Syafiqah, “A Comparison between Various Polymeric Membranes for Oily Wastewater Treatment via Membrane Distillation Process,” pp. 1–15, 2023 [7] C. Zhao, J. Xue, F. Ran, and S. Sun, “Modification of polyethersulfone membranes - A review of methods,” Progress in Materials Science, vol. 58, no. 1. Elsevier Ltd, pp. 76–150, 2013. Available: https://doi.org/ 10.1016/j.pmatsci.2012.07.002 [8] F. H. Azhar, Z. Harun, K. N. Yusof, S. S. Alias, N. Hashim, and E. S. Sazali, “A study of different concentrations of bio-silver nanoparticles in polysulfone mixed matrix membranes in water separation performance,” J. Water Process Eng., vol. 38, no. May, p. 101575, 2020. Available: https://doi.org/10.1016/j.jwpe.2020.101575 [9] H. Kong, J. Fu, R. Yu, M. Wang, J. Tu, Q. Wu, X. Zhang, L. Niu, and K. Zhang, “Organic–Inorganic Composite Antifouling Coatings with Complementary Bioactive Effects,” Coatings 2024, Vol. 14, Page 741, vol. 14, no. 6, p. 741, 2024. Available: https://doi.org/ 10.3390/COATINGS14060741 [10] Y. Jiang Y. Jiang, K.Wang, Y. Zhang, Y. Cheng, T. Zhu, J. Huang, W. Cai, and Y. Lai, “Superoleophobic TiO2@SSM membranes with antifouling and photocatalytic ability for efficient microbubbles flotation emulsion separation and organic pollutants degradation,” J. Memb. Sci., vol. 690, p. 122217, 2024. Available: https://doi.org/ 10.1016/J.MEMSCI.2023.122217 [11] U. Azhar, M. Arif, M. S. Bashir, M. Babar, M. Sagir, and G. Yasin, “Functionalized Fe3O4-based methyl methacrylate Pickering PolyHIPE composites costabilized by fluorinated block copolymer for oil/water separation,” Chemosphere, vol. 309, 2022. Available: https://doi.org/ 10.1016/j.chemosphere.2022.136526 [12] F. Othman, F. Marpani, M. Shafiq Mat Shayuti, N. Hashimah Alias, and N. Hidayati Othman, “A mini review on polydopamine and silver functionalized membrane for antibiofouling in water and wastewater application,” Mater. Today Proc., 2023. Available: https://doi.org/ 10.1016/j.matpr.2023.02.393 [13] M. R. De Guzman, C. K. A. Andra, M. B. M. Yap Ang, G. V. C. Dizon, A. R. Caparanga, S. Huang, K. Lee., “Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation,” J. Memb. Sci., vol. 620, p. 118881, 2021. Available: https://doi.org/10.1016/j.memsci.2020.118881 [14] N. Almasoud, T. S.Alomar, H. A. Aldehaish, M. A. Awad, M. S. Alwahibi, K. A. Alsalem, S. Rai, A. Bhattarai, S. Almutlaq, B. Alsudairi, R. Alamr, and H. Alowais, “Green biogenic synthesis of silver nanoparticles: a thoroughly exploration of characterization and biological efficacy,” Dig. J. Nanomater. Biostructures, vol. 19, no. 4, pp. 1791–1806, 2024. Available: https://doi.org/ 10.15251/DJNB.2024.194.1791 [15] S. U. Nur, A. Pujiyanto, L. Enny, S. Endang, L. Hotman, W. Triani, and F. Siska, “Critical Parameters of Silver Nanoparticles (AgNPs) synthesized by sodium borohydride reduction,” Res. J. Chem. Environ., vol. 22, no. Special issue II, pp. 179–183, 2018 [16] M. S. Panwar, P. Pal, and D. Joshi, “Advances in Green Synthesis of Silver Nanoparticles: Sustainable Approaches and Applications,” J. Drug Deliv. Ther., vol. 14, no. 11, pp. 177–184, 2024. Available: https://doi.org/10.22270/JDDT.V14I11.6854 [17] Z. Zulfiqar, R. R. M. Khan, M. Summer, Z. Saeed, M. Pervaiz, S. Rasheed, B. Shehzad, F. Kabir, and S. Ishaq, “Plant-mediated green synthesis of silver nanoparticles: Synthesis, characterization, biological applications, and toxicological considerations: A review,” Biocatal. Agric. Biotechnol., vol. 57, 2024. Available: https://doi.org/10.1016/J.BCAB.2024.103121 [18] S. Kadanyo, N. N. Gumbi, C. N. Matindi, D. S. Dlamini, Y. Hu, Z. Cui, H. Wang, M. Hu, and J.Li, “Enhancing compatibility and hydrophilicity of polysulfone/poly (ethylene-co-vinyl alcohol) copolymer blend ultrafiltration membranes using polyethylene glycol as hydrophilic additive and compatibilizer,” Sep. Purif. Technol., vol. 287, no. January, p. 120523, 2022. Available: https://doi.org/10.1016/j.seppur.2022.120523 [19] X. Chen, Y. Zhai, X. Han, H. Liu, and Y. Hu, “Surface chemistry-dominated underwater superoleophobic mesh with mussel-inspired zwitterionic coatings for oil/water separation and self-cleaning,” Appl. Surf. Sci., vol. 483, pp. 399–408, 2019. Available: https://doi.org/10.1016/j.apsusc.2019.03.318 [20] F. Senusi and S. Ismail, “Performance of tannic acid/tetraethylenepentamine coated polymeric membrane for the separation of different surfactant-stabilized oil in water emulsions,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2020. Available: https://doi.org/10.1088/1757-899X/796/1/012051 [21] P. D. Sutrisna, K. A. Kurnia, U. W. R. Siagian, S. Ismadji, and I. G. Wenten, “Membrane fouling and fouling mitigation in oil–water separation: A review,” J. Environ. Chem. Eng., vol. 10, no. 3, 2022. Available: https://doi.org/10.1016/j.jece.2022.107532 [22] F. Senusi, M. Shahadat, and S. Ismail, “Treatment of emulsion oil using tannic acid/tetraethylenepentamine-supported polymeric membrane,” Int. J. Environ. Sci. Technol., vol. 16, no. 12, pp. 8255–8266, 2019. Available: https://doi.org/10.1007/s13762-019-02233-6 [23] F. Senusi and S. Ismail, “Performance of tannic acid/tetraethylenepentamine coated polymeric membrane for the separation of different surfactant-stabilized oil in water emulsions,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, 2020. Available: https://doi.org/ 10.1088/1757-899X/796/1/012051 [24] H. Wu, Y. Liu, J. Huang, L. Mao, J. Chen, and M. Li, “Preparation and characterization of antifouling and antibacterial polysulfone ultrafiltration membranes incorporated with a silver–polydopamine nanohybrid,” J. Appl. Polym. Sci., vol. 135, no. 27, pp. 1–10, 2018. Available: https://doi.org/10.1002/app.46430 [25] A. Febriasari, A. H. Ananto, and S. Kartohardjono, “Polysulfone Filtration Membranes with Polyvinilpirrolidone (PVP) Additive for Batik Wastewater Treatment,” J. Appl. Membr. Sci. Technol., vol. 25, no. 1, pp. 1–9, 2021. [Online]. Available: https://doi.org/10.11113/amst.v25n1.202 [26] P. Ponnaiyan and G. Nammalvar, “Enhanced performance of PSF / PVP polymer membrane by silver incorporation,” Polym. Bull., no. 0123456789, 2019. Available: https://doi.org/10.1007/s00289-019-02735-w [27] R. Zhang, C. Deng, X. Hou, T. Li, Y. Lu, and F. Liu, “Preparation and Characterization of a Janus Membrane with an ‘Integrated’ Structure and Adjustable Hydrophilic Layer Thickness,” Membranes (Basel)., vol. 13, no. 4, 2023. Available: https://doi.org/10.3390/MEMBRANES13040415 [28] F. H. Azhar, Z. Harun, K. Yusof, S. Ibrahim, R. Hussin, H. Basri, S. Alias, and N. H. H. Hairom, “Enhancement of Antifouling and Antibacterial Properties of Biosynthesis Silver Nanoparticles from Parkia speciosa (Stink Bean) Polysulfone Mixed Matrix Membrane,” Fibers Polym., vol. 26, no. 5, pp. 1851–1866, 2025. Available: https://doi.org/10.1007/S12221-025-00925-0/METRICS [29] N. S. Suhalim, N. Kasim, E. Mahmoudi, I. J. Shamsudin, N. L. A. Jamari, and F. Mohamed Zuki, “Impact of Silver-Decorated Graphene Oxide (Ag-GO) towards Improving the Characteristics of Nanohybrid Polysulfone Membranes,” Membranes (Basel)., vol. 13, no. 6, pp. 1–17, 2023. Available: https://doi.org/ 10.3390/membranes13060602 [30] J. Dolina, Z. Gon?uková, M. Bobák, and L. Dvo?ák, “Modification of a hollow-fibre polyethersulfone membrane using silver nanoparticles formed in situ for biofouling prevention,” RSC Adv., vol. 8, no. 26, pp. 14552–14560, 2018. Available: https://doi.org/10.1039/C8RA02026D [31] Y. Zhang, X. Duan, B. Tan, Y. Jiang, Y. Wang, and T. Qi, “PVDF microfiltration membranes modified with AgNPs/tannic acid for efficient separation of oil and water emulsions,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 644, p. 128844, 2022. Available: https://doi.org/ 10.1016/J.COLSURFA.2022.128844 |
|



















